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INTRODUCTION 

Statement of the Problem 

Some of the most troublesome soils encountered by soil and foundation 

engineers are of a type termed expansive or swelling clays. Such soils 

contain large amounts of montmorl1lonite clay mineral. They are common 

in the Gulf Coastal Plain and in river floodplalns of the central United 

States; on weathered basalt of the southwestern United States and central 

India; and in many other local areas. These areas are subjected to 

climatic conditions that are conductive to significant changes in moisture 

content during different seasons of the year. Expansive soils can also 

give trouble In any region where construction is accomplished in a dry 

season and the soils absorb moisture during a subsequent wet season. If 

highly compacted, these soils will swell and produce uplift pressures of 

considerable intensity if the moisture content of the soil increases after 

compaction. This action may result in heaving that is intolerable to 

support structures. Heave can result in the failure of a highway embank­

ment, cracking of concrete structures and tilting of buildings. 

Because of the problems caused by expansive soils, this research was 

directed to an investigation of the shrink-swell phenomenon caused by the 

change In moisture content. The study was divided Into two phases; one 

is the study of the shrink-swell phenomenon due to the processes of 

adsorption and desorption of water on montmorillonite, and the other study 

concerns the process of mechanically loading and unloading a mont­

morl 1lonitic clay sample. 
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Scope 

The scope of the study is concentrated on the physico-chemical and 

mineralogical aspects of montmorillonite clay expansion, and involves 

volume and energy relationships. The X-ray diffraction data were obtained 

and analyzed under varying conditions of partial vacuum on the one hand, 

and variable applied mechanical pressure on the other. Both apparatuses 

used in the study were designed by 01 son(89), and worked properly through­

out the period of the Investigation. From the X-ray and adsorption-

desorption data, swelling pressures at various clay interiayer spacings 

or hydration states can be deduced and then compared to those induced by 

mechanical means. 
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THEORY AND REVIEW OF LITERATURE 

CI ay-Water System 

Many Investigators (12,64,105) have presented evidence to show that 

the water held directly on the surfaces of clay particles is In a physi­

cal state different from that of liquid water. The specific characteris­

tics of this water which delimit it from ordinary water would be restricted 

to relatively short distances from the clay-particle surface. Terzaghi 

(105) explained the surface adsorption of water on the basis of the dl-

pole character of the water molecule; the latter possesses positive and 

negative charges, the centers of which do not coincide. Since the sur­

face of the clay particle is normally negatively charged, the positive 

ends of the water molecules are considered to be attracted toward the 

clay surface, the negative ends extending outward. The Initial layer of 

water is believed to consist of water molecules which form another sur­

face of negative charges on which can be built another layer of completely 

oriented water molecules. This process of building up layer upon layer 

could be continued Indefinitely were It not for the fact that the water 

molecules possess thermal energy and tend to be in a state of continuous 

motion. In accordance with classical concepts of kinetic theory, the 

motion due to thermal energy opposes the regular orientation. At the 

actual clay-mineral surface the water molecule should be highly oriented, 

and the degree of orientation decreasing outward as the ^lative effect 

of thermal movement becomes greater (105). Macey (68) pointed out 

difficulties encountered by this concept, particularly in view of the 

facts that the clay-mineral surface is not a uniformly charged plane, and 
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that the water molecules do not act strictly as little rods with positive 

and negative ends. 

There are many concepts of the structure of a water molecule, but 

the one proposed by Bernai and Fowler (l4) and modified by Morgan and 

Warren (81) Is probably the most acceptable (64). According to Bernai 

and Fowler (14), the water molecule consists of a V-shaped arrangement of 

the atomic nuclei, the internuclear 0-H distances being 0.96 X and the 

internuclear angle being 103 to 106 degrees, which is very close to the 

tetrahedral angle of 109 degrees. In the molecule there are four regions 

where the density of the outer electrons is maximal. Two of these re­

gions are associated with the OH bonds and coincide with the position of 

the protons; the other two are associated with lone pairs of electron 

and are located above and below the plane of the atomic nuclei on the 

opposite side of the oxygen nucleus from the proton. Therefore, the net 

charge distribution of the water molecule resembles a tetrahedron with 

two positive and two negative corners. The resultant positive center mid­

way between the protons is separated from the resultant negative center 

near the oxygen nucleus on the side next to the protons. Hence the water 

molecule has a dipole moment (14). 

At temperatures below 0°C, water molecules tend to occur in fixed 

positions in an ice lattice. For this reason It Is possible to determine 

their molecular arrangement by means of X-ray diffraction, which shows 

that each molecule is tetrahedraliy coordinated to four others and that 

the oxygen nuclei are 2.76 « aparL (34,35). Ockrnsn (88) shc.vsd by using 

infrared and Raman spectra that the hydrogen atom is not midway between 
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the oxygen atoms of the bonded molecules, but is 1.00 8 from one oxygen 

atom and 1.76 8 from the other; thus the Individual water molecules retain 

their identity and are held together by hydrogen bonds. Therefore, In an 

assembly of water molecules, there is a tendency for each molecule to be 

hydrogen-bonded to four neighboring water molecules which surround it 

tetrahedrally (88). 

When ice melts there Is an increase In density from 0.917 for ice to 

nearly 1.000 for water. The magnitude of this density Increase Is very 

revealing in that if all of the hydrogen bonds were broken in the process 

of melting, water would have a close-packed arrangement, i.e., each water 

molecule would be in close contact with twelve others. Then, provided 

the molecular radius remained at 1.4%, it would have a density of 1.84. 

Conversely, for a density of 1.00 the molecular radius would have to be 

1.72 8 (14). In the words of Bernai and Fowler (l4), "We have therefore 

the choice of assuming either that water is a simple close-packed liquid 

in which the effective molecular radius has changed from 1.4 8 In the 

solid to 1.72 % in the liquid, or that the radius is still approximately 

1.4 % but that the mutual arrangements of the molecules are far from that 

of a simple liquid." The X-ray evidences of Morgan and Warren (81) indi­

cate that the latter Is correct. It appears that liquid water retains a 

high degree of hydrogen bonding and that this bonding decreases with 

increasing temperature, it has been concluded that the structure of water 

must be similar to that of ice at least for short distances, or perhaps 

it may be stated that water has a loose ice-like arrangement or, in the 

terminology of Morgan and Warren, water has a "broken down ice structure." 
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Hence, not only is the radius of the water molecule nearly the same as in 

ice, but the structure of water partly resembles that of ice (81). 

The surface of clay mineral is made up of either oxygen atoms or 

hydroxy1 groups arranged in a hexagonal pattern which can superimpose a 

similar pattern in a hydrogen-bonded water structure (37,49,68). In the 

model of Hendriclcs and Jefferson (49), a water layer is composed of water 

molecules joined into hexagonal groups of an extended hydroxy1 net as 

shown in projection in Figure 1. Each side of the hexagon must correspond 

to a hydroxy1 bond, the hydrogen bond of one water molecule being directed 

toward the negative charge of a neighboring molecule. One-fourth of the 

hydrogen atoms, or one hydrogen atom of half of the water molecules, are 

not involved in bonding within the net (K, M and 0 of Figure 2). The 

net Is tied to the surface of the clay minerals by the attraction between 

those hydrogen atoms not involved in bonding within the net and the sur­

face oxygen layer of the clay-mineral units (Figure 2 and 3) (49). Be­

cause of the dipole character of the water as well as the lattice 

characteristics of the clay mineral surface, water molecules are joined 

by hydrogen bonding into groups of extended hexagonal networlts. By 

assuming a 3.0 % separation of oxygen, such a water networic as _a and ^ 

dimensions of the clay minerals, and every other water molecule In the 

net bas one hydrogen available for bonding to an oxygen of the clay 

mineral surface. Successive hexagonal nets might build up on one another 

and are hydrogen bonded to one another. This hypothesis leads to a 

laminar stacking of hexagonal water molecule network with a vertical sepa­

ration of 2.76 % for each layer. In this configuration each water molecule 
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Figure 1. Configuration of water adsorbed directly adjacent to 
the basal plane surfaces of the clay minerals (after 
Hendricks and Jefferson, 49) 

Figure 2. 

O Oxygens 

O Hydrogens in plane of oxygens 
® Hydrogens below plane of oxygens 

Arrangement of oxygens and hydrogens In a water net (after 
Hendricks and Jefferson,49) 
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SU lea layer of 

clay mineral 

Oriented water 

molecules 

-o-JÇ)—--—I 

Silica layer 

of clay mineral 

Figure 3. Configuration of the water net proposed 
by Hendricks and Jefferson, showing the 
binding through hydrogens to the adjacent 
clay-mineral surfaces (after Hendricks 
and Jefferson, ^9) 
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In a mononrolecular layer occupies an area of about 11.5 

A second mechanism by which water may be attracted to a clay surface 

is hydration of exchangeable cations. Since the cations.are attracted to 

the negatively charged surface, so Is the water of hydration. Low (64) 

suggests that this mechanism of attracting water should be most important 

at low water contents, and at high water contents, exchangeable cations 

should still play a role in clay-water Interaction. At high water contents 

the exchangeable catl^ons tend to dissociate from the surface and are re­

garded as being in solution. 

Macey (68) postulated that the initially adsorbed water has the 

structure of ice. He considered that it fits on top of the oxygen net of 

the basal plane of the three-layer clay minerals as shown In Figure 4. 

The fit of the water molecules with the oxygen net as suggested by Macey 

(68) is different from that suggested by Hendrlclts and Jefferson (49) in 

that the distribution of water molecules is not planar. In the clay Inter-

layer oxygen surface, the oxygen atoms are 4.51 R apart, whereas according 

to the Macey concept, the oxygens of the basal plane of ice are 4.52 % 

apart, and the paclcing would be even looser than that suggested by 

Hendricks and Jefferson (49). Macey suggested that the ice structure 

develops on clay mineral surfaces with the hexagonal molecular configura­

tion of the basal plane of ice. This structure tends to build outward 

from the surface. In the Hendricks and Jefferson concept, the ice 

structure is stretched so that the offset water molecules come into the 

Soûiê plsr.c end there !s no change in the hydrogen bonding. 

Forslind (37,38), on the basis of electron-diffraction data, suggested 
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Figure 4a. Superposition of the ice lattice on the surface 
oxygen layer of the clay ihinerals (after Macey, 68) 

• Oxygen layers forming surface of silicate 

OOxygen atoms of Ice 

Figure 4b. Structure of ice 



www.manaraa.com

11 

the same Ice structure arrangement postulated by Macey but based his 

argument on the Edelman-Favejee structure (66, p. 152) rather than the 

Hofmann-Ende1-Wi1m structure of montmori1loni te (66, p. 146). 

Demi reI (33) presented two ways in which the ice structure may de­

velop In the interlayer regions. One would be to stack the hexagonal 

rings In the way they successively occur in the quartz-1 ilte structure of 

ice. This would cause an alternating platelet separation of 2.76 R and 

0,92 8 with successive molecular layers of water. In the second method 

the first hexagonal network Is shared by two montmoriI ion I te platelets 

causing a separation of 2.76 two hexagonal networks are stacked and 

held by the two silica surfaces causing a separation of 5*52 8; the 

third and fourth molecular layers of water fill in between the hexagonal 

networks forming tetrahedrons with the water molecules of the network. 

A complete unit cell of Ice Is formed with the entrance of the fourth 

molecular layer of water, causing a separation of 7.36 8. The fifth and 

sixth layers of water enter between the unit cell of Ice and the clay 

surfaces, forming hexagonal networks and causing separations of 10.12 % 

and 12.88 respectively. Demlrel (33), using data reported In the 

literature and his own for various species of homoionic montmori1lonites, 

found evidence to support the build-up of an ice structure In the second 

way. With an ice structure, the area covered by a water molecule Is 

about 17.5 

Barshad (9) suggested another concept of the nature of the adsorbed 

water, on the basis of careful dehydration determinations. According to 

him, at very low states of dehydration for montmori1lonite, the water 
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molecules tend to form tetrahedrons with the oxygen of the top layer of 

the linked silica tetrahedrons of the lattice. This type of packing 

would give rise to hexagonal rings of water molecules which are similar 

to the hexagonal rings of oxygens on the vertices of the linked silica 

tetrahedrons of the individual silicate sheets. In Figure 5, a, to f^ 

represent such water molecules forming tetrahedral units with oxygens of 

the underlying silica tetrahedral network. The packing in this con­

figuration would be loose, as there would be only four molecules of water 

per unit cell per molecular layer, and the height added for a single layer 

of water molecules would be 1.78 8, according to Barshad. At higher 

states of hydration the water adsorbed by montmori1lonite tends to form 

hexagonal rings of water molecules; these are similar to the hexagonal 

rings of the oxygens of the montmori1lonite basal plane which forms the 

bases of the linked silica tetrahedrons. In Figure 5, J. to £ represent 

such water molecules. In this configuration the packing is more dense, 

and there are six molecules of water per unit cell per layer of water 

molecules. The height added for a single layer would be about 2.55 

since the water molecules would be directly superimposed on the oxygens 

(9). 

None of these suggested configurations take into account a "kinking" 

of tetrahedral clay layers into a distorted hexagonal arrangement, which 

accounts for the changes In a_and ^ dimensions with ionic substitutions 

in the octahedral clay layer (18). This appears pertinent to a recent 

finding of Ravina and Low (96) that the b-dimension also changes with 

varying degree of hydration, tending to expand as the clay hydrates, 
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Figure 5. Arrangement of water molecules in the 
Interlayer space of montmori1lonite and 
vermicuilte (after Barshad, 9) 
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suggesting an "unkinking" of the clay tetrahedron. 

Adsorption Method to Determine the Surface Area of Sodium Montmorl1lonite 

In 1938 Brunauer, Emmett, and Teller (22,25) developed the multi-

molecular adsorption (BET) theory under the following assumptions: 

a. The same forces that produce condensation are also chiefly 

responsible for the binding energy of multimolecular adsorption. 

b. The first adsorbed layer is attracted strongly by the surface, 

the second layer essentially not by the surface but by the first adsorbed 

layer, and the adsorption thus propagates from layer to layer. Their 

derivation Is a generalization of the Langmuir treatment of unlmolecular 

adsorption and Is based on a detailed balancing of forward and reverse 

rates of reaction (22). BET theory seems to be the most acceptable one 

for the study of adsorption of vapor on a solid surface (32). 

A direct method for the determination of the surface area of a 

powdered solid from the adsorption isotherm plot for a gas or vapor has 

been suggested by Brunauer, Emmett and Teller (25) on the basis of their 

multimolecular theory. When the weight or volume of a gas or vapor ad­

sorbed on a solid surface at standard temperature and pressure is plotted 

on the ordinate axis versus the relative pressure of the gas or vapor 

on the abscissa axis, a typical S-shaped curve is obtained, called an 

S-shaped isotherm. Brunauer e^ a^. (25) found from many experiments 

that all substances except charcoal gave typical S-shaped isotherms, the 

low pressure portion of the isotherm being concave to the pressure axis, 

the higher pressure region convex to the pressure axis, and the inter­

mediate region approximately linear with respect to pressure. The 
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beginning of the approximate linear portion of the experimentally de­

termined low-temperature adsorption Isotherms Is believed to correspond 

to the covering of the surface of the adsorbent by a complete unl-

molecular layer of adsorbed gas. The specific surface of the solid 

covered with a monomolecuiar layer of the vapor then may be calculated 

by a formula as, 

(I) 
M 

where is Avogadro's number, M is the molecular weight of the adsorbate, 

s is the area of an adsorbated molecule, and q is the mass adsorbed at 
m 

monolayer coverage at the adsorbent surface, expressed per gram of the 

adsorbent. Assuming that the adsorbed molecules have the same packing 

on the surface as the molecules of the liquified or solidified gas have 

In their plane of closest packing, we can obtain for the area covered by 

a molecule: 

M M ,2/3 
Area s » 4(0.866) ( ) = 1.091 ( Î (2) 

4yT N^6 N^6 

where 5 Is the density of the solidified or liquified adsorbate. The co­

efficient 1.091 is called, by Brunauer (22), the packing factor; Its 

value for an adsorbate may vary from one adsorbent to another depending 

on the packing and on the variation of adsorbent pores (63). In the case 

of water adsorption on any adsorbents, the densities of the liquified and 

âoîîdîfîsd wstcr differ by nearly '0 percent. Hence Equation (2) can not 

be significantly more precise than ^5 percent. It Is therefore 
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Inappropriate to give the "packing factor" to 0.1 percent for the water 

adsorption on clay minerals. The packing factor for water adsorption 

on clay minerals can be In the limit of 1.1. Equation (1) can be used to 

determine specific surface areas of adsorbents If the cross-sectional 

area of the adsorbate molecule is known; or It can be used to determine 

the area occupied by an adsorbate molecule If the specific surface is 

known. Using nitrogen as an adsorbate, Emmett e^ (36) obtained 

specific surface areas of soil colloids ranging from 4l to 71 m /gm. 

Hendricks, Nelson and Alexander (50) investigated the effect of various 

chemisorbed cations on the adsorption of water by the clay mineral 

montmorl1lonlte. The different samples of montmorlIlonlte had the same 

specific surface areas and same number of equivalent weights of positive 

Ions adsorbed, but differed from each other with respect to the nature 

of the positive Ions. It was found that the adsorption of water at equal 

relative pressures depended strongly on the nature of the positive adsorbed 

ions, particularly at low relative vapor pressures. Brunauer (22, p. 357), 

using the water adsorption data of Hendricks et^ al_. (50), obtained a 

specific surface of 400 m /gm for montmorlIlonlte. Zettlemoyer et al. 

(120) used ammonia adsorption on Wyoming bentonlte and obtained a value 

2 2 
of 556 m /gm; they obtained 34.5 m /gm with nitrogen as an adsorbate. 

Mooney e^ ̂ L' (79) used water desorptlon data to obtain values of about 

800 m /gm for sodium and hydrogen montmorillonites, but could not obtain 

similar values during a later study (80). Goates and Hatch (44) found 

a value of 303 mf/gm with water adsorption on montmorl1lonlte. Orchiston 

(91) obtained 336 m /gm with water vapor and sodium saturated 
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montmorlllonite. Johansen and Dunning (55), with sodium montmori1lonite, 

2 2 
get 38 m /gm with nitrogen, 203 m /gm with water vapor adsorption data 

2 and 250 m /gm with water vapor desorption data. All of the areas men­

tioned above were based on closest packing of the adsorbate on the clay 

surfaces. The large differences between values determined with nitrogen 

and those for ammonia and water vapor are attributed to the ability of 

the latter to penetrate between montmorlllonite layers while nitrogen 

covers only the external surfaces (7,79). The underlying assumption of 

closest packing of the adsorbate may be pertinent since the specific 

surfaces obtained from ammonia and water vapor sorption data, except for 

the one determination by Mooney e^ (79), were substantially less than 

that calculated from crystal lographic data. The value of specific sur-

face area calculated from crystallographic data is 748 m /gm. This calcu­

lation Is shown in Appendix I. The variations of specific surface areas 

obtained from the past investigations (44,55,91) will be discussed in more 

detail on page II7 of this report. 

Surface Free Energy Change Due to Adsorption 

Bangham (5) was the first to show that the Gibbs adsorption equa­

tion could be used to determine the free energy changes that occur during 

adsorption of vapor on solid surfaces. Others (15,53) have used Gibbslan 

methods to show that the free energy of immersion of a solid surface in 

saturated vapor can be calculated from vapor adsorption data. Jura and 

Harkins (58) showed that the formulas given by those investigators (15,53), 

when expanded, are Identical to that of Bangham. 

Boyd and Livingston (15) have shown that If the adsorption Isotherm 
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for a vapor on a crystalline nonporous powder is obtained and if the 

specific surface area determined by the BET method (25) Is employed, the 

change in free energy of a clean solid surface upon immersion in a 

saturated vapor can be calculated. Using the Gibbs adsorption equation, 

Boyd and Livingston (15) derived an equation for the free energy of 

immersion of a nonporous wettable surface In a saturated vapor. It can 

be made to read: 

Po 

" (Tsl - Tso + ° / p ""P (3) 
Mi O 

where is the solid-liquid interfacial tension, YJQ the surface 

tension of the solid in vacuum, the surface tension of the liquid 

In contact with Its own vapor, q is the mass of the vapor adsorbed by. a 

unit of solid at pressure p, and R, T, M, E and p^ are the gas constant, 

absolute temperature, molecular weight of the vapor, specific surface of 

the solid and the saturation pressure, respectively. 

Demirel (33) has presented a somewhat simpler derivation based on 

thermodynamics, by considering that when a vapor at pressure p Is In 

equilibrium with an^adsorbed layer, the differential free energy change 

involved is isothermal transfer to one mole of saturated vapor onto a 

solid surface of unit area is equal to the difference between t.ie chemi­

cal potential of the vapor at pressure p and at saturation pressure p^. 

The transfer Involves the compression of the vapor, and the expansion of 

the adsorbed layer. He further pointed out that by substituting 

p^d(p/p^) for dp, the expression may be changed to the following: 
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AF • - d(p/p ) (4) 

ME Q P/P* 

which Is a more convenient form to use when relative vapor pressures are 

employed. 

The value for AF, the free energy change accompanying the process of 

transferring the saturated vapor onto a unit area of solid surface, can 

be calculated from Equation (4). This transfer Is completed when the 

equilibrium relative vapor pressure p/p^ equals unity. Boyd and 

Livingston (15) and Jura and Harklns (58) recommended graphical Integra­

tion of this equation as a simple and accurate means of determining AF. 

Boyd and Livingston (15) and Jura and Harklns (58) calculated the free 

energy change by extrapolating the adsorption Isotherm to saturation 

pressure with the assumption that no capillary condensation occurs. They 

make a correction which amounts to subtracting the surface tension of the 

liquid (Y|y) from the equation for AF for obtaining the free energy of 

wetting, which presumes a zero contact angle. However, Craig e^al_. (30) 

have pointed out that this method leads to difficulties for nonporous 

powders because it is not possible to accurately extrapolate the adsorption 

Isotherm to a definite limiting value, and a "nonporous" powder acts as a 

porous solid so that large numbers of capillary spaces are actually 

formed due to particle-to-partlcle contacts. The main difference In be­

havior between porous and nonporous solids Is that during adsorption of a 

vspcr en s pcrcjs soUd, the solid-vacuum interface is replaced by a 

liquid-vapor interface and a solid-liquid Interface, and at p/p^ = I 
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because of filling of the pores, the liquid-vapor interface is completely 

destroyed. In the case of a vapor on a nonporous solid, the area of the 

liquid-vapor Interface at p/p^ = 1 is not destroyed, and the area is con­

sidered to be essentially equal to that of the solid-vacuum Interface 

(30). The assumption of no capillary condensation, and the steepness of 

the adsorption isotherm near the saturation pressure, introduce uncer­

tainties In the determination of the free energy of Immersion by the sub­

traction of the surface tension of liquid from AF. For these rea­

sons and because of the porous nature of clay minerals, the free energy 

of immersion in the bulk liquid (the free energy of adsorption) was cal­

culated directly from Equation (4) by graphical integration of the q 

versus p/p^ plot. 

If the adsorbent Is a noninteracting fine particle wettable by the 

liquid, capillary condensation in the contact zones of the particles would 

theoretically fill the voids with the liquid before final saturation is 

attained. In these cases, the change in free surface energy may be calcu­

lated by equation 

AF = (Ygi - Y50) (5) 

where AF would be the free energy of immersion of a unit area of solid 

surface in a bulk liquid. Craig et_a1_. (30), Dobay et £]_. (34), and Fu 

and Bartell (42) concur In this viewpoint. The free energy of immersion 

in the bulk liquid was then calculated directly from Equation (4) by 

graphical integration. 

If the material being investigated consists of interacting solid 
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particles. Hirst (50 and Demîrel (33) Independently have shown that 

Equation (5) must be modified by introducing a term representing the 

particle interaction. If the solid powder adsorbent has a rigid structure, 

AF as given by Equation (4) Is equal to that expressed by Equation (5). 

When the adsorbate penetrates into the interstices of Interacting solid 

surfaces and causes a separation against the forces of Interaction, Equa­

tion (5) may be modified as given by Demlrel (33): 

AF = (Vg^ - Yjq) + aAV (6) 

2 
where o Is the Interstitial surface area per cm of total surface and AV 

2 
Is the free energy change per cm of the interstitial surface due to 

separation of particles against the force of Interaction (92, p. 253). 

Therefore, with clay minerals the free energy change given by Equation (4) 

Is equivalent to that expressed by Equation (6). The term (y^^ - will 

be called the free energy of immersion of the solid in the liquid and AF 

the free energy of wetting of the solid by the liquid. 

Brunauer (22) states that "the term physical adsorption may be de­

fined as the disappearance of molecules from the gas phase and the re­

maining of these molecules attached to the surface of the solid and there 

held in place by a weak interaction between the solid and the gas" (22). 

Physical adsorption takes place spontaneously. The process can be re­

versed and the adsorbate may be removed by lowering the pressure and is 

then recovered unchanged chemically (1). Other terms associated with 

physical sdscrptlcn are 1o\Y temperature adsorption, secondary adsorption, 

and capillary condensation. 
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According to Adamson (1), atoms or molecules constituting a solid 

are held together by different forces: van der Waals or ionic forces or 

chemical bonds are involved. Whatever the nature of these forces, an 

atom located within the body of the solid Is subjected to balanced forces 

In all directions or It would move out. At the surface of a solid the 

chemical bonding interactions are not balanced as they are in the interior 

of the solid, resulting in a surface energy or surface tension. The 

tendency of a solid surface to Interact is partially satisfied by the 

adsorption of molecules of a gas, and therefore adsorption on a clean 

surface occurs with a decrease in the free energy of the system. 

Expansion and Swelling of Montmori1lonite 

Several investigators have studied the expansion of montmorillonite 

upon adsorption of water between the clay layers. Nagelschmidt (82) 

showed that there was apparently a continuous variation of the basal 

spacing with water content. Bradley, Grim and Clark (17) found that water 

molecules are adsorbed in monomolecular layers between the clay layers. 

From studies with oriented samples they found no evidence of a gradual 

swelling but rather a series of apparently definite and discrete hydrates. 

Hendricks et_ (50) reported that basal spacing varies continuously but 

not uniformly with water content; this variation and nonuniform?ty result 

from an averaging effect from a lattice containing various numbers of 

water layers in different parts. Mering (74) found that the formation of 

discrete monomolecular layers of water does not hold precisely at low 

moisture contents when the adsorbed ion hydrates, e.g. Ca^ or Mg"; for 

sodium montmori1lonite hydration seemed to occur by complete molecular 
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layers. Mooney al^. (79) used the data of Hendricks ej^aj^. (50) and 

their own to show a stepwise uptake of Interlayer water with increasing 

humidity; however, they disregard much of the data of Hendricks et al. 

(50). Glllery (43) found that well-defined hydrates exist over certain 

ranges of vapor pressure and that between these ranges mixed layers of 

the hydrates predominate. From the studies mentioned above, and others 

(33,76), It has been quite well established that the separation of clay 

layers Is due to the adsorption of Integral molecular layers of water; 

the apparently continuous change In observed basal spacings results from 

random alteration of layers at various spacings. However, the relation­

ship between relative humidities and layer separation Is not well de­

fined; data reported for homolonic, e.g., sodium, montmorl1lonite shows 

considerable variations (33,43,50,76,80). 

Barrer and McLeod (7) Investigated the sorption of nonpolar and of 

polar gases and vapors on sodium montmorl1lonite and have shown that the 

nonpolar species are not Intercalated, but the polar molecules may be. 

Many workers (50,74) found that the interlayer swelling does not proceed 

beyond 20 R for calcium montmorl1 Ion I te. Mering (74) concluded that 

crystalline swelling for sodium montmorl11on I te ceased at 20 R when the 

first order basal spacing became very diffuse. In contrast to this ob­

served crystalline swelling, sodium montmorl11 onI te will swell to twenty 

times Its own volume In water. He also has shown that almost all the 

macroscopic swelling In montmorlIlonite takes place at water contents 

equivalent tû â fêîâtîvc humîdîty "f grsstsr thsr; 55 pcrcsnt. Te ccntro 

the water content and measure the X-ray spacing In this range by direct 
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methods would Involve very precise temperature control (74). 

Norrlsh and dulrk (86) postulated from the result of their study 

that swelling of montmorlllonite takes place In two rather distinct ways. 

First, below 22 8 the interlayer expansion Is stepwise and very dependent 

on the exchangeable cation. For monovalent cations the number of water 

layers taken up is directly related to the hydration energy of the cations. 

Secondly where expansion occurs to greater than 35 R it is continuous and 

independent of cation for monovalent cations. In this region montmori1lo­

ni te is probably developing a diffuse double layer and behaving as a 

colloid. The swelling Is then essentially osmotic and Is expected to be 

independent of cation for ions of the same valence. The sudden jump In 

spacing from about 20 % to about 40 R is interesting and is probably 

associated with reversal of the force due to the charge on the montmori1-

lonite sheets. At low spaclngs the force will be electrostatic and 

attractive, as in mica, whereas at high spaclngs the charge will result 

In a repulsive (osmotic) force. At high spaclngs this repulsive force 

Is presumably balanced by van der Waals-London attractive forces. 

Norrlsh (84) also observed more or less diffuse equilibrium of the unit 

layers In swollen flakes by montmori1lonite clays In contact with electro­

lyte solutions. These spaclngs decrease with Increasing electrolyte con­

centrations in a range between about 130 to 19 X. An evaluation of the 

unit layer interaction forces and energies shows that the double-layer 

repulsion forces cannot be cancelled by van der Waals attractive forces 

at each equilibrium distance without making unrealistic assumptions. 

Van Olphen (111) considered the attractive forces with special emphasis 
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on the cross linking of stacks of parallel layers by a relatively small 

number of nonparallel plates. Most Investigators (84,114,115) studied 

the swelling pressure of montmori1lonite paste. The spacings of the clay 

particles are In the range of 20 to 200 8. The swelling pressure of 

montmori1 IonI te at equilibrium spacing below 20 8 is not well investiga­

ted. One purpose of this study is to investigate the swelling pressure 

in the range of  10 to 20 R. 
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MATERIALS 

Sodium Montmorillonlte 

The sodium montmorillonlte used was prepared for earlier Investiga­

tions and the method of preparation has been described in detail else­

where (33,97). A commercially available Wyoming bentonlte, produced by 

the American Colloid Company and known by the trade name VoIclay-SPV, was 

used. According to the producer It consists of 90 percent montmorillonlte, 

essentially sodium montmorillonlte, and 10 percent other materials such 

as feldspar, quartz and volcanic glass. The Volclay-SPV was cleansed of 

coarse grained impurities by a repeated (12 times) sedimentation process. 

An X-ray diffraction pattern from a dried sample of the suspension after 

the last sedimentation is shown in Figure 6. 

Sodium montmorillonlte was prepared from the purified bentonlte by 

mixing a saturated sodium chloride solution with the suspension obtained 

from the sedimentation process. This mixture was stirred for 24 hours 

and the clay was then separated by means of a super-centrifuge. This 

process was repeated five times to assure replacement by sodium ions of 

all the cations associated with the montmorillonlte. The free electro­

lyte was removed from the sample by dispersion In distilled water and 

centrlfuglng. This was repeated several times until the material was 

free of chloride Ions. The physical and chemical properties were de­

termined by standard procedures and are represented In Table 1. 
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Figure 6. X-ray diffraction chart of purified Volclay-SPV obtained by using filtered 
chromium radiation (after Demlrel, 33) 
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Table 1. Properties of the sodium montmorillonlte 

Physical and chemical properties 

Physical properties 

Liquid limit, 968 

Plastic 1Imit, 51 

Plasticity Index, % 917 

Shrinkage limit, 17 

Centrifuge moisture equivalent, 882 

Chemical properties 

Cation exchange capacity, me/100 gm® 94 

pH^ 7.55 

*ASTM Method D 423 - 6lT. 

^ASTM Method 0 424 - 59. 

^ASTM Method D 427 - 61. 

^ASTM Method D 425 - 39. 

^Ammonium acetate method. 

^Glass electrode method using suspension of 1 gram of soli In 30 c.c. 
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Distil led Water 

Distilled water used for preparation of the sample was obtained from 

a steam operated SLH-2 Barnstead still which produces, when fresh, 

practically carbon dioxide-free water with a pH approaching 7« For the 

adsorption experiments this distilled water was triple distilled Just 

before introducing into the apparatus. 
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TESTING EQUIPMENT 

High Pressure X-ray Goniometer Accessory 

This accessory attached to an X-ray diffractometer was used to In­

vestigate first order basal spacing of sodium montmorlllonlte while under 

pressure. The apparatus was designed and initially tested by Olson (89)' 

It is shown in Figure 7 and consists of the following major components: 

(a) body or cylinder, (b) end plate, (c) nose plate, (d) piston, (e) 

porous plug assembly, (f) compression spring, (g) steel ball, (h) beryl­

lium window, (l) pedestal, (j) dovetail, (k) rotatable base, (1) fixed 

base, (m) and (n) adjusting screws, (o) quick-connected hydraulic coupling, 

(p) standpipe, (q) brass gasket and (r) thumb screws. Detailed drawings 

of the high pressure X-ray goniometer accessory appear In Olson's thesis 

(89). The fixed base of the accessory was designed to mount to the 

goniometer of a General Electric diffractometer. 

Figures 8a and 8b show the complete system which Includes (a) high 

pressure goniometer accessory, (b) flexible pressure hose of 0 - 10,000 

psl capacity manufactured by Enerpac Test Systems, Butler, Wisconsin, 

(c) 10:1 ratio pressure Intensifier using carbon dioxide gas on the low 

pressure side and hydraulic oil on the high pressure side, (d) 0 - 10,000 

psi high range pressure gage (100 psi divisions), (e) 0 - 200 psi low 

range pressure gage (2 psi divisions), and (f) 10,000 psi cut-off valve. 

The maximum pressure range limited by the hydraulic system is about 

5OCC psi due tc the 0-rîngs used in the high pressure chamber. The 

maximum pressure that the beryllium window can sustain, according to the 

specifications of the manufacturer (Kaweckl Berylco Industries, Inc., 
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Figure 8a. High pressure goniometer 
In working position 

w 

Figure 8b. Pressure Intensifier 
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Hazelton, Pennsylvania), Is 25,000 psi. However, In this study the 

pressure was Increased to a gage pressure of 5,000 psI, corresponding to 

a pressure on the beryllium window and on the sample equal to about 45,000 

psI or about 3>1 kllobars. This Is obtained by multiplying the area ratio 

of the piston to the area of the beryllium window. The area ratio of the 

apparatus Is 9.121 and the calculation Is shown In Appendix IV. 

After finishing the experiment, the beryl Hum window was inspected 

and appeared to sustain no perceptible damage to its surface. The im­

perceptible damage of the beryllium surface may be due to the safety 

factor that the manufacturer provided for this product. The maximum gage 

pressure that the hydraulic hose can withstand is 10,000 psi and Is not 

the limiting factor in the present system. 

High-Vacuum X-ray Goniometer Accessory 

The high-vacuum goniometer accessory is designed to use the same base 

and adjusting mechanisms as the high pressure X-ray goniometer accessory. 

Tapped holes are provided in the dovetail of the base to receive the 

pedestal of either Instrument. 

Figure 9 shows the essential features of the high-vacuum accessory: 

(a) pedestal, (b) base, (c) sample holder, (d) beryllium sleeve, (e) 

flanged cap, (f) connecting bolts, and (g) entry tube. Except for the 

beryllium sleeve, which serves as the window through which the X-rays 

pass, all parts are of stainless steel. The base, beryllium sleeve and 

flanged top were fabricated by Leemath Division of Image Systems, Long 

Island, New York, to the specifications of Olson (89). 
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\ (a) 

Figure 9. Hlgh-vacuum X-<ay goniometer accessory 
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Figure 10 shows a schematic of the entire system of which the vacuum 

chamber Is a part: (a) mechanical vacuum pump, (b) oil diffusion pump, 

(c) vent tube, (d) vacuum chamber, (e) pressure sensor having 100 mm 

mercury capacity, (f) electronic pressure indicator, (g) pressure sensor 

temperature controller, (h), (I) and (j) high vacuum cut-off valves, 

(k) metering valve and (1) adsorbate reservoir. Items (e), (f) and (g) 

were manufactured by MKS Instruments, inc., Burlington, Massachusetts. 

The high-vacuum goniometer accessory is used to study the energy-

volume relationships of clay-adsorbate systems using X-ray diffraction 

techniques while the sample Is undergoing adsorptlon-desorptlon processes. 

From the data obtained the relationship between relative pressures and 

basal spaclngs can be drawn. 
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Figure 10. High-vacuum system 
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EXPERIMENTAL PROCEDURES 

High Pressure Goniometer Accessory 

The fixed base of the high pressure goniometer accessory was mounted 

with two screws at the central axis of the X-ray goniometer in the position 

normally occupied by the sample holder. The remainder of the previously 

assembled apparatus was then set into place upon the fixed base and the 

alignment of the accessory begun. The goniometer and monochromator having 

been previously precisely aligned following specifications of the manu­

facturer. 

Alignment of the accessory was performed by using a piece of mica as 

a reference specimen. The mica sheet was cut and trimmed to fit the 

sample chamber of the accessory. The alignment proceeded by adjusting the 

screws of the goniometer accessory to achieve a maximum Intensity of the 

diffracted beam at the value of 26 = 8.87 degrees. This is the angle 

previously obtained from the same mica mounted in a conventional sample 

holder, and corresponds to a basal spacing of 9.97 R. The copper tube 

used In this study Is a GE model CA-8-L/Cu operated at 50 KV and 30 MA. 

A GE diffracted beam crystal monochromator utilizing a doubly curved LI F 

crystal was used in this investigation. According to Brindley (19), for 

clay mineral Investigations, synthetic lithium fluoride Is probably the 

most generally suitable monochromator. It is a very strong reflector and 

is completely stable under atmospheric conditions. The X-ray machine was 

run at a relatively slow scan rate of 0.4 degree per minute with a 1 

degree beam slit, 0.2 degree detector slit, target-beam angle of 4 degrees, 

and a scintillation counter. 
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The adjustment of the high pressure goniometer accessory to obtain 

a maximum Intensity of the diffracted beam at the value of 2@ • 8.87 

degrees was performed by the following steps: 

I. Rough adjustment 

a. Mount the fixed base of the accessory with the mica In the 

sample chamber. 

b. Set the goniometer to zero and turn on the X-ray machine. 

Allow 30 minutes for the X-ray tube to warm up and expand. 

c. Check the X-ray beam passing through the beryllium window 

with a fluorescent screen. 

d. Adjust translatlonal screw so that the sample reduces the 

shadow one half. 

e. Adjust rotational screw for maximum shadow width. 

f. Repeat steps ^ and £ until the one-half shadow width Is 

obtained. 

II. Fine adjustment 

a. Set the goniometer to the proper 26 angle (8.87 degrees 

for the mica used). 

b. Adjust the translatlonal screw for maximum Intensity. 

c. Adjust the rotational screw for the maximum Intensity. 

d. Repeat steps ^ and £ until the intensity reaches its maximum 

value. The maximum intensity is indicated by movement of 

the pen on the recording chart. 

After reaching the maximum Intensity as described above, an X-ray 

diffraction test Is run on the mica sample by scanning from 5 to 10 
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degrees; the maximum of the peak should be at 8.87 degrees. 

This Is the proper alignment of the goniometer pressure accessory. 

After alignment was completed the two knurled shoulder screws beneath 

the pedestal were loosened and the body (or cylinder) of the apparatus 

removed from its pedestal to facilitate loading of the sample. This does 

not disturb the alignment. 

In order to load the sample into the sample chamber, the chamber was 

turned up and the two screws holding the nose plate in place were re­

moved while the axis of the cylinder was vertical. The beryllium window 

and the 0.001 in. brass gasket were then removed, uncovering the porous 

nickel plug. A steel gage block with a stop at 1/16 in. depth was 

placed on top of the porous nickel plug and the nose plate reassembled, 

thereby depressing the piston and porous plug to a depth 1/16 in. below 

the level of the body of the apparatus, and forming the sample chamber. 

The porous plug was held in this position with a set screw from the side 

of the body and the nose plate was removed once more. The sample then 

was placed Into the sample chamber. 

The sodium montmori1lonite used was mixed thoroughly with distilled 

water and allowed to equilibrate for about 24 hours before loading Into 

the chamber. Loading of the sample was done by molding the prepared 

sodium montmoriIlonite paste into the chamber by the use of a spatula. 

After the loading operation was completed, the 0.001 in. brass gasket, 

beryllium window, and nose plate were assembled to the body of the device 

with the two nose plate cap screws. The entire assembly was reûîouritsd 

onto the goniometer pedestal with the two knurled shoulder screws, which 
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position the sample for X-rays. In order to Insure that sufficient 

moisture was available at all stages of the test, a plastic L-shaped 

standpipe was threaded Into the tapped hole formerly occupied by the set 

screw and was filled with distilled water. 

The high pressure hose of the pressure Intensifier was bled of all 

entrapped air and the hose connected at the top of the goniometer acces­

sory through the quick-connected coupling. CuK^ radiation was used to 

X-ray the sample at 50 KV and 30 MA. After the X-ray spectrum of the 

sample at zero pressure had been obtained, the first increment of pressure 

was applied and held constant. X-raying of the sample was begun and 

continued at periodic intervals until a state of equilibrium of the mont-

morl1lonite-water system was reached. Equilibrium was considered to 

have been achieved when no further perceptible movement of the diffraction 

peak occurred. This procedure was repeated after each Increment of load 

up to 5,000 psi gage pressure. A similar procedure was then followed 

during the unloading path for each Increment down to the point of zero 

pressure. Minor temperature variations were found to have no effect on 

the pressure readings because the COg pressure regulator compensated for 

pressure changes due to small variations of temperature. Thus the 

pressure could be kept constant even though a temperature variation of 

+ 1°F occurred. The temperature was maintained at 70 + 1*F (21.1 + 

0.6°C). 

High-Vacuum X-ray Chamber 

Before mounting the specimen, the high-vacuum chamber must be aligned 

in the correct position. This was done by the same procedure as for 
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aligning the apparatus for high pressure, again using a mica sample as 

reference. 

Experimentation with the high vacuum accessory using water as the 

adsorbate was accomplished in the following manner: 

a. The sodium montmori1 lonite sample was stirred in distilled water 

and the suspension dropped from a pipette onto a porous 

ceramic plate. The water was drained through the plate by 

means of suction from a vacuum pump, causing the clay particles 

to deposit on the plate. This was continued until a noticeable 

cake of montmori1lonite paste was obtained. The ceramic plate 

was then allowed to dry in a desiccator, and placed in the 

sample holder within the vacuum chamber. 
" C 

b. The entire system was made vacuum-tight and evacuated to 10 mm 

mercury with the valve (j) to the adsorbate reservoir closed. 

Degassing of the triple-distilled water in the adsorbate 

reservoir was accomplished by alternately freezing, thawing, 

and applying a vacuum, with valve (I) to the vacuum chamber 

closed. The system was degassed for about two weeks to evacuate 

-5 
to 10 mm mercury. 

-5 c. When the system reached 10 ^ mm mercury pressure, water vapor 

was introduced into the adsorption chamber in small Increments 

through the metering valve (k) and cut-off valve (j) during the 

adsorption run. Pressure readings were taken with the 

electronic manometer through the pressure sensor. , After cach 

Increment of pressure change, the sample was repeatedly X-rayed 
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to determine the equilibrium first-order basal spaclngs. This 

process was continued until the saturation pressure of the 

adsorbate was reached at the temperature at which the test was 

conducted. The equilibrium iwas reached about 24 hours after the 

Introduction of each pressure Increment to the adsorption chamber, 

d. During the desorptlon run, the adsorbate vapor was condensed 

Into the adsorbate reservoir or evacuated to achieve pressure 

stages from saturation to the lowest pressure attainable by 

the system. 

The temperature was controlled to be constant at 70*F (2I.I°C) in 

this experimentation. This was achieved by using many fans to circulate 

the air In the alr-condltloned room, and using an automatically controlled 

electric heater. It was found that temperature could be kept nearly 

constant and the change in the pressure readings was so small that it did 

not cause serious error for the values of relative pressure. Generally 

the variation In relative pressure due to temperature change was less 

than 0.02. 
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PRESENTATION AND DISCUSSION OF RESULTS 

High-Vacuum X-ray Study 

The data from the X-ray diffraction study of sodium montmorHIonite 

during adsorption and desorption of water vapor are presented In Tables 

2 and 3, respectively. The line widths of the diffraction peaks, B^, at 

half-height were determined as sketched In Figure 11 for a single peak. 

In order to determine the widths of composite peaks, the composite peak 

was resolved by trial-and-error Into two normal peaks sketched to approach 

symmetry and for an equivalence of areas A and B, as shown in Figure 12. 

The widths of the individual peaks, B^, at half-height were determined as 

shown. The total width at each half-height was then averaged to obtain 

a measure of the total width B^ of the composite peak, the Integrated 

intensity represented by the area under the peak was measured at equili­

brium by use of a planlmeter. In order to insure the constancy of the 

X-ray system, the machine was allowed to warm up for about 30 minutes 

prior to X-raying the specimen. The relative vapor pressures, first order 

basal spacings, line widths of the resolved peaks and of the composite 

peaks, and Integrated Intensities of the resolved peaks and of the com­

posite peaks are given In Table 2 for the adsorption run and In Table 3 

for the desorption run. 

The variation of the ffrst order basal spacings of composite peaks 

with relative vapor pressures is shown In Figure 13a. The variations of 

the line widths of composite peaks Is shown in Figure i3b. Figure 13a 

shows that the initial average basal spacing was not obtained on the 

desorption run, indicating some water was left entrapped in the interlayer 
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Table 2. X-ray diffraction data for high-vacuum study, adsorption run 

p 

mm, H<j 

a 
Po 

mm, Hg 

p/Po Resolved^ 
*001 

spacings, 

% 

Percentage 
area of the 
peaks after 
resolution, 

percent 

degrees 

4' 

deg rees 

A® 
o 

In2 

s' 

In^ 

0.000 18.765 0.00 9.9 69.7 0.80 1.02 3.6 5.3 
10.8 30.3 1.16 1.7 

0.748 0.04 9.9 70.2 0.80 1.02 3.6 5.1 
10.8 29.8 1.23 1.5 

1.572 0.08 9.9 70.0 0.85 1.05 3.7 5.3 
11.0 30.0 1.26 1.6 

3.222 0.17 9.9 66.7 0.88 1.14 3.7 5.5 
11.1 33.3 1.41 1.8 

5.160 0.28 10.2 60.2 1.11 1.78 3.8 6.4 
11.6 39.8 1.46 2.6 

5.720 0.31 10.3 67.7 1.29 1.90 4.2 6.2 
12.0 32.3 1.35 2.0 

6.240 0.33 10.9 79.7 1.78 2.16 6.1 7.7 
13.1 20.3 1.10 1.6 

= vapor pressure of water at 21.1°C = 18.765 mm Hg. 

*^^001 ** first order basal spacings between the clay platelets. 

= line width of resolved peak. 

By = line width of composite peak. 

Integrated intensity of resolved peak. 

A|. = total Integrated Intensity of composite peak. 
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Table 2. (Continued) 

p p p/p Resolved Percentage 
° dooi area of the 

mm, Hg mm, Hg spacfngs, peaks after 
o. resolution, 

percent 

6.450 18.765 0.34 11.1 
13.6 

83.2 
16.8 

7.400 0.39 11.3 
14.1 

87.2 
12.8 

7.810 0.42 11.4 
14.2 

86.5 
13.5 

8.804 0.47 11.9 
15.0 

87.4 
12.6 

9.400 0.50 12.0 
15.1 

86.4 
13.6 

10.350 0.55 12.2 
15.2 

82.0 
18.0 

10.820 0.58 12.3 
15.2 

83.6 
16.4 

11.750 0.63 12.5 
15.3 

75.5 
24.5 

12.100 0.65 12.6 
15.4 

76.0 
24.0 

13.240 0.71 13.9 100.0 

13.660 0.73 14.5 100.0 

14.150 0.75 14.9 100.0 

degrees degrees 

C
M

 
v

O
 

00 
O

 

2.10 

1.79 
1.15 

2.00 

1.80 
1.20 

2.04 

1.61 
1.20 

1.74 

1.55 
1.35 

1.70 

1.42 
1.32 

1.66 

1.39 
1.33 

1.63 

1.34 
1.32 

1.75 

1.32 
1.32 

1.72 

2.08 2.08 

1.94 1.94 

1.65 1.65 

In^ In^ 

6.3 7.6 
1.3 

7.1 8.2 
1.1 

7.5 8.7 
1.2 

9.2 10.5 
1.3 

9.7 11.2 
1.5 

7.5 9.2 
1.7 

7.2 8.7 
1.5 

7.8 10.3 
2.5 

8.0 10.5 
2.5 

12.7 12.7 

13.4 13.4 

14.0 14.0 
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Table 2. (Continued) 

p 

mm, Hg 

p.' 

mm, Hg 

P/PQ Resolved'^ 

spacings, 

8 

Percentage 
area of the 
peaks after 
resolution, 

percent 

degrees 

4' 

degrees 

V V 

14.750 18.765 0.79 15.2 100.0 1.35 1.35 16.4 16.4 

15.350 0.82 15.2 100.0 1.24 1.24 16.3 16.3 

15.730 0.84 15.4 100.0 1.16 1.16 17.6 17.6 

17.050 0.91 15.5 100.0 1.02 1.02 18.1 18.1 

17.540 0.93 15.5 100.0 1.01 1.01 18.8 18.8 

17.950 0.96 15.5 100.0 1.00 1.00 19.0 19.0 

18.200 0.97 18.8 89.0 0.92 1.03 17.5 19.7 
22.4 11.0 0.98 2.2 

18.765 1.00 19.0 84.6 0.86 0.96 15.4 18.8 
23.6 15.4 0.88 3.4 
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Table 3. X-ray diffraction data for high-vacuum study, desorption run 

p p ® p/p Resolved'' Percentage B_^ A ® A-^ 
« dug, area of the o T "2 2 

mm, Hg mm, Hg spaclngs, peaks after degrees degrees In in 
o resolution, 

percent 

18.765 18.765 1.00 19.0 84.6 0.86 0.96 15.4 18.8 
23.6 15.4 0.88 3.4 

17.400 0.93 18.9 82.5 0 .67 0.76 20.3 24.3 
22.8 17.5 0.75 4.0 

15.680 0.84 18.8 84.0 0.74 0.88 21.4 25.0 
22.5 16.0 0.88 3.6 

14.100 0.75 15.6 95.7 0.73 0.79 22.4 23.4 
17.4 4.3 0.50 1.0 

13.250 0.71 15.4 100.0 0 .91 0.91 17.2 17.2 

12.350 0.66 15.1 100.0 1.20 1.20 15.3 15.3 

11.150 0.59 12.8 11.9 0.68 1.78 1.6 
14.4 88.1 Ï.44 11.8 13.4 

9.940 0.53 12.8 64.6 0.88 1.43 7.6 11.5 
14.4 35.4 0.96 3.9 

^p^ = vapor pressure of water at 21.1°C = 18.765 mm Hg. 

'**'001 first order basal spacing between the clay platelets 

= line width of resolved peak. 
d 

By = line width of composite peak. 

®A = integrated intensity of resolved peak. 
f Ay = Integrated intensity of composite peak. 
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Table 3 (Continued) 

p 

mm, Hg 

a 
Po 

mm, Hg 

p/Po Resolved'' 

spac?ngs, 

Percentage 
area of the 
peaks after 
resolution, 

percent 

degrees 

V 

degrees 

V 

In^ 

s' 

in: 

8.770 18.765 0.47 12.7 80.0 0.74 0.91 8.0 10.0 
14.0 20.0 0.66 2.0 

6.170 0.33 12.6 91.7 0.75 0.83 9.3 9.7 
13.6 8.3 0.34 0.4 

4.330 0.23 12.5 100.0 0.87 0.87 19v0 10.0 

2.530 0.14 12.1 100.0 1.43 1.43 7.8 7.8 
0.020 0.00 10.0 72.0 0.90 1.14 1.8 2.5 

18.0 0.58 0.7 
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Figure 11. Sketch showing the determination of 
X-ray diffraction peak 
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Figure 12. Résolution of composite peak 

vn 
to 
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Figure 13a. Variation of first order basal spacings 
of composite peaks with relative pressure 
of water vapor for sodium montmori1lonite 

Figure 13b. Variation of total line widths with 
relative pressure of water vapor 
for sodium montmori1lonite 
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regions. 

The data of the present study, Figure 13a, show that the change in 

the average basal spacing takes place In a continuous but nonuniform 

manner with change In relative pressure. The continuity is apparently 

due to the existence, simultaneously, of varying numbers of molecular 

layers of water, between clay platelets, the variation in total widths 

of the observed composite diffraction peaks are shown In Figure 13b. The 

variations are In part due to the lack of constancy of Interlayer 

spaclngs (60, p. 517) and give an indication of the relative amounts of 

layers at the various spaclngs (67). 

The curve of Figure 13b shows that line widths increase somewhat 

at low relative pressures. Indicating some uptake of water In the inter­

layer regions although the average basal spacing remains constant at 

about 9.9 R. As the basal spacing increases there Is a corresponding 

Increase In line width to a maximum occurring near the center of the 

steeper portion of the basal spacing plot. The line widths then decrease 

as the basal spacing plot approaches a flatter portion. A minimum line 

width is reached at a relative pressure which corresponds to a basal 

spacing on the flat portion of the curve in Figure 13a. The minimum line 

width indicates that most of the clay platelets are nearly at the observed 

spaclngs. As the relative pressure Increases another Increment of ex­

pansion takes place and the line widths follow the same pattern as 

described above. Water take-up continues In this manner until the 

saturation pressure is reached. 

The general shape of the adsorption and desorptlon plots, in 
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Figure 13a Is very similar to those presented elsewhere (33,^3,76,80,97, 

120). The adsorption curve displays a rather steep portion between 

relative pressures of 0.28 to 0.50 followed by a somewhat less steep 

portion. Another steeper portion begins at a relative pressure around 

0.65. This corresponds to the region in which the second increment of 

platelet separation (or uptake of a second layer of interlayer water) 

begins to take place. Figure 13a also shows that the steeper portion be­

tween p/p^ of 0.28 to 0.50 corresponds to the first increment of layer 

separation. The Initial portion of the adsorption curve In Figure 13a, 

p/p^ » 0 to p/pg » 0.20, indicates that the initial water adsorbed is 

mainly confined to the external surface of the clay platelets, so the 

basal spacing of the clay platelets does not change much in this region. 

This is consistent with studies of other investigators (7,80,97); for 

example, Barrer and MacLeod (7) explained that the initial water adsorbed 

is mainly confined to the external surface of the clay platelets. After 

an approximate threshold pressure is reached the water molecules penetrate 

more freely between the clay platelets and cause separation. With water 

vapor, a second stage of Interlayer adsorption occurs and is reflected 

by the second steeper portion of the adsorption curve in Figure 13a. As 

P/Pg approaches 1.00, capillary condensation is added to the interlayer 

adsorption. The X-ray data of Figure 13a show that a third increment of 

platelet separation also occurs at high relative pressures. The de-

sorptlon curve exhibits three steep portions along the course of de-

sorption. Each steep portion represents the removal of a layer of the 

interlayer water from the clay platelets. 
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Figure 13a also shows a hysteresis loop existing in adsorption and 

desorotion run. This is consistent with the results obtained in 

the past investigations (33,43,76,80,97,120). Hysteresis was explained 

by many investigators. In the study of water vapor adsorption by mont-

morillonlte, Mooney et al. (79,80), on the basis of irreversible 

hysteresis, assumed that the desorption branch represented the true 

equilibrium curve. Mooney e^ al_. (79) found that, by repeated running 

the adsorption-desorption run on the same sample for many times, the 

desorption branch was more closely reproduced than was the adsorption 

branch. They explained the nonreproduclblIIty of the adsorption curve 

when adsorption is begun on a practically dry clay, surface heterogeneities 

cause the system to be very sensitive to slight variations In the amount 

of residual water present. When desorbing from an almost saturated clay, 

slight variations In water content are no longer significant. Johansen 

and Dunning (55) suggested the lack of reproducibility of adsorption Is 

due to an Inability to desorb back to the beginning of the hysteresis 

loop, which Is very near zero relative pressure. McBain (70) and Foster 

(39) explained the hysteresis on the basis of the shape and arrangement 

of the pores in which capillary condensation takes place. Since effective 

degassing can minimize the Zigsmondy type of hysteresis, the pore 

structure would probably be the main cause of hysteresis. 

Barrer and MacLeod (7) studied the adsorption of various non-polar 

and polar gases and vapors, including water vapor, by a sodium-rich mont-

moriiionite. They explained the hysteresis observed v.'hen polar gases and 

vapors are adsorbed in the Interlayer regions. If nucleation of an 
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adsorbate-rlch phase; occurs around the periphery of crystallites poor 

In adsorbate, this nucleatlon of an adsorbate-rlch phase must be 

associated with strain and Interfacial free energies. These free 

energies are positive, and so slow down the free development of the ad­

sorbate-rlch phase until the pressure has exceeded the value for true 

thermodynamic equilibrium between the vapor and separated montmorlllonlte 

pletelets with and without Inter!ayer adsorbate. On desorptlon the 

development of the adsorbate-poor phase In the Interlayer region Is de­

layed by strain and Interfacial free energy until the pressure has fallen 

below that for true equilibrium. This results in a hysteresis loop. 

They found the hysteresis observed on sorption of water vapor to be a 

composite loop associated with both capillary condensation and Interlayer 

water. They also observed a hysteresis loop for adsorptlon-desorptlon 

of nonpolar gases and vapors on their montmorlllonlte. Since the non-

polar adsorbates were adsorbed only on the external surface, the reasons 

extended for hysteresis with polar adsorbates are not applicable. They 

suggested that when clay particles are lubricated by a film of capillary 

condensate some of the clay particles are drawn by surface tension forces 

Into a thixotropic structure. This more regular array then retains 

capillary condensed adsorbate more firmly than would a purely random 

array. When the film of capillary condensate becomes sufficiently dilute 

It ceases to lubricate and hold the thixotropic structure together. The 

array then becomes more random again and must give up the remaining con­

densate. 

Hirst (51) also developed an explanation for hysteresis associated 
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with Interlayer adsorption. Attraction forces between platelets prevent 

penetration of the adsorbate until a threshold pressure Is reached. These 

forces are then overcome by forces leading to penetration and the 

platelets separate to admit a layer of adsorbate. The interlayer 

attraction Is reduced by the expansion, so further separation requires 

less energy. However, the energy of adsorption Is also less and a second 

layer of adsorbate does not enter until a higher pressure is reached. On 

desorptlon the platelets are initially separated and their attractive 

interaction weakened while the forces tending to separate them are high. 

The platelets cannot come together until the amount of Interlayer 

adsorbate, and thus swelling pressure, are substantially reduced. There­

fore, a hysteresis loop Is observed. 

According to Brunauer (22, p. 409) the adsorption process most 

probably causes a change In the pore volume which may be either reversible 

or irreversible. The pore volume change may result In different pore 

shapes and arrangements in the external surfaces of the montmorl1lonite 

sample. X-ray diffraction data, the initial adsorption curve of Figure 

13a, show that at p/p^ of about 0.20 the uptake of water into the inter­

layer region begins. 

Because the present data of the adsorption-desorptlon study of mont­

morl lloni te tend to be consistent with the data by other Investigators, 

It Is informative to consider some evidences from past studies In the 

discussion of the data of the present study, Hendricks and Jefferson (49) 

have shown that theoretically the X-ray diffraction fronr, a powder should 

show that the basal spacing would vary continuously with water content. 
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and Hendricks et_al_. (50) found this to be so In their study. Mooney 

e^a1_. (80), from the X-ray data on desorptlon from Wyoming montmorll-

lonlte and data of Hendricks e^al_. (50) on Mississippi and California 

montmor111onI tes produces an almost perfect stepwise curve. Roderick 

(97) studied the adsorption and desorptlon of water vapor for sodium 

montmorlllonlte and his data are shown In Figure 14. The change between 

the basal spacing plot and line width plot depends on many factors. 

Roderick (97), after Investigating the adsorption and desorptlon of water 

vapor for sodium montmorlllonlte for many cycles, concluded that the 

major factors responsible for the scatter of the X-ray data on adsorption 

and desorptlon are: (a) the Initial condition of the sample at the start 

of the test, (b) the source and method of preparation of the material, 

and (c) whether the data are collected during adsorption or desorptlon. 

Other factors are the control of temperature and humidity and possibly 

the size of the clay particles. 

Arrangements of interlayer water 

As adsorption on the internal surfaces of montmorlllonltes proceeds 

the molecular layers of interlayer water buildup either in a laminar or 

In other spatial geometric arrangements. In the first case the stable 

thickness should be Integral multiples of the diameter of a water molecule; 

in the second they should conform to a geometry dictated by the size of 

the water molecule. Hypothetical configurations for the water adsorbed 

on the clay surface have been postulated by several Investigators 

(8,37,38,45,49,68), as discussed In the Review of Literature. 

The continuity of the basal spacing versus relative pressure curve 
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Figure 14. Variations of first order basal spaclngs 
and line widths with relative pressure 
of water vapor for sodium montmori 1 lonite 
(after Roderick, 97) 
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has been attributed to the simultaneous existence of clay platelets 

separated by various molecular layers of Interlayer water. If all the 

Interlayer water has been removed to zero relative pressure, a sharp 

peak will be observed corresponding to the collapsed basal spacing of 

sodium montmorl1lonlte, about 9.6 X (21). As the relative pressure In­

creases some water begins to penetrate between some of the clay platelets. 

Figure 15 shows the relationship between the total line widths of 

composite peaks and the first order basal spacings for the adsorption 

run of the present study. The basal spacings at three minimum line 

widths occur at 12.3 %, 15.5 R and 19.0 8, more or less corresponding to 

the first, second and third layers of Interlayer water. The minimum 

line width at the basal spacing of 19.0 % occurred following a Jump in 

the data near the saturation region, such that Intermediate spacings were 

not obtained. 

Using 9.60 % as the collapsed basal spacing of sodium montmorl11onite, 

basal spacings at various hypothesized configurations of interlayer water 

can be developed as shown in Table 4 (97). The three spacings of Figure 

15, at 12.3, 15.5, and I9.O 8, do not correspond to any of the postulated 

structures. Before this phenomenon Is discussed, some assumptions used 

In this study will be Introduced. Following Roderick (97), it Is 

assumed that (a) the system of the present study may be treated as a 

random Interstratification of two components of clay platelets with two 

different average basal spacings, (b) peak averaging between pure 

component positions Is linear and in proportion to the components, such 

that (c) maximum line widths occur when the relative proportion of the two 
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Figure 15. Variation of line widths with basal spacings of sodium 
montmorilionite, adsorption run 
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Table 4. Calculated first order basal spacîngs of sodium montmori1lonite for various suggested inter 
layer water configurations (after Roderick, 97) 

Number of molecular 
layers of water 

0 9.60 9.60 9.60 9.60 9.60 

1 12.36^ 12.36^ 12.36^ 11.38 11.38 

2 16.12 13.28 15.12 13.47 14.14 

3 17.88 16.04 15.12 15.56^ 16.90 

4 20.64 16.96 16.96 

5 23.40 19.72^ 19.72^ 

6 26.16 20.64 22.48 

^Configuration of Hendricks and Jefferson (49). 

^Thlrd alternative of Barshad (9). 

^Alternatives suggested by Demirel (33). 

Agrees most closely with observed spacings. 

Calculated basal 
spacing for . 
laminated stacking, ' 

% 

Ice configuration^ Barshad's configuration 

Ca>CHlated basal 
spacing, 

% 
A1 terna-
tive 1 

Alterna­
tive 2 

Calculated basal 
spacing, 

% 
-Alterna­
tive 1 

Alterna-
tive 2 
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components are equal, (d). minimum line widths correspond to dominance 

of single component, and therefore should correspond to a basai spacing 

near that calculated from the proposed arrangement. If assumptions (b) 

and (c) hold, the maximum line widths should occur at a basal spacing 

which is the average of those calculated for two successive molecular 

arrangements of water between platelets, as for example midway between 

the positions for 0 and 1 layer of interlayer water, or 1 and 2 layers. 

The following discussion for the basal spaclngs at maximum and minimum 

line widths Is based on the above assumptions. 

The first maximum line width occurs at a basal spacing of about 

10.90 R, very close to the 10.98 R average calculated for zero and one 

molecular layers of water. The first minimum line width occurs at about 

12.30 % which is close to the calculated value of 12.36 % for one 

molecular layer of water. However, this line width Is still relatively 

large, indicative of nonuniform spacing. The second maximum line width, 

after Interpolation, appears to be at about 13.75 % which Is very near 

to 13.74 R average for one and two layers of Interlayer water. However, 

the second minimum line width Is at about 15.50 R or more because of the 

data gap, Is somewhat higher than 15.12 % calculated for two laminar layers 

of water, and corresponds most closely to Barshad's Alternative 1 for 

three layers of water. None of the alternatives account for any Influence 

from the Interlayer cation, and it would appear that there may be a 

change in the water structure as the distance from the mineral surface 

increases, plus a change in the position of ths hydrated cation. 

An additional light on this problem may be obtained by resolving 
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X-ray traces Into two peaks as shown in Figure 12. The first order basal 

spaclngs of the resolved peaks are plotted in Figure 16 for the adsorption 

run only. The most intense resolved peak is named the primary peak and 

the other resolved peak composing the same composite peak is called a 

secondary peak. The more conventional method of plotting only one basal 

spacing at the maximum unresolved intensity (C in Figure 12) gives only 

the primary peak line in Figure 16. 

According to Figure 16 the secondary peak tends to converge with the 

primary peak as the relative vapor pressure increases to p/p^ • 0.85, 

Indicating that at this relative pressure essentially all clay platelets 

have the same basal spacing. According to the data in Table 2 the 

secondary peak also Is sharpening as the relative pressure increases. 

In Figure 16 It is evident that platelet adjustment starts as soon as 

water vapor Is Introduced into the system, although the basal spaclngs of 

the primary peaks are nearly constant up to p/p^ = 0.18. The changes 

In the secondary peaks indicate that there is at least a partial change 

in the basal spaclngs In some clay platelets, but the change is not uni­

form throughout the whole mass of the clay. The data in Figure 16 agree 

with the previous conclusion, that the 9.9 and 12.3 % peaks are composite 

whereas 15.5 8 peak Is not. The reason for the broadness at 12.3 8 peak 

Is therefore due to the interstratification with 15 8, indicating 12.3 % 

may be too high. The change In the primary peak being gradual indicates 

either Interstratification or a variable water position, the first water 

perhaps fitting in the tetrahedral faces as proposed by Barshad (6) and 

discussed in the Review of Literature. 
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Figure 16. Variation of first order basal spaclngs with 
relative pressure of water vapor after resolving 
Into primary and secondary peaks for sodium 
montmori1lonite, adsorption run 
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From the data of Table 2, at p/p • 0.71 there Is one peak with a 
o 

basal spacing of about 13.7 However, from Figure 16, there are 

secondary peaks from p/p^ • 0.65 to p/p^ • 0.85. The presence of the 

secondary peak Is Indicated by the convergence of the curve for secondary 

peaks and that for the primary Into a single peak. After convergence 

Into a single peak at p/p^ • 0.85, the single peak continues until a 

relative pressure of 0.96 Is reached. At p/p^ » 0.96 the basal spacing 

of the primary peak Is 15.5 8, that Is In the second state of hydration. 

When the relative pressure Is beyond 0.96, or when the third state of 

hydration begins, the Integrated intensity of the peak is reduced and 

there is the appearance of a new secondary peak of higher basal spacing. 

When the relative pressure is greater than 0.96 there Is an abrupt loss 

of the lower basal spacing and It was found that the integrated intensity 

was reduced as the sodium montmorillonite adsorbed more water beyond 

p/p^ of 0.96. The reduction In Intensity suggests an increased degree of 

randomness In the interlayer water structure of the sodium montmorillonite. 

The steepness In slope of the primary curve In Figure 16 Indicates 

that the particles are adsorbing a discrete amount of interlayer water, 

after which the slope of the primary curve Is flattened. The apparent 

smooth change from the basal spacing of 10.8 % to 12.6 R (dashed line in 

Figure 16) and 15.2 % to 15.5 % (dashed line In Figure 16) indicates a 

gradual changing of average interlayer spacing with a narrowing of the 

distribution, as indicated by line widths, at 12.3 and 15.5 %. 

Figure 17 shavs the percentage area of primary peaks and secondary 

peaks with respect to the relative pressure. The area under the peak is 
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of water vapor for sodium montmorl1 Ion I te, adsorption 
run 
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a measure of Intensity and thus Indicates the relative amounts of clay 

platelets that have the spacing corresponding to the peak position. From 

Figure 17, at zero relative pressure the quantity of the clay platelets 

initially at 9.9 R spacing Is about 70 percent of the total diffracted 

platelets. This Is only approximate since no correction has been made 

for the structure factor, which is not known, or for the Lorentz-polariza­

tion factor. When the vapor pressure increases the platelets adjust 

themselves In a complex manner and there are changes, mostly Increases, 

in the basal spacing within those platelets. The composite peaks with 

two average basal spacings are obtained because of the water layers be­

tween the clay platelets are different. From Figures 16 and 17, at 

particular relative pressures, p/p^, there are two average basal spacings 

resulting In a composite peak. 

Figures l8a and l8b show the relationship between total integrated 

Intensity of composite peaks with relative vapor pressure. Figure 18a 

shows that the total integrated intensity, in the unit of area under 

the peak. Increased with relative pressure. The total integrated inten­

sity of composite peaks expressed In the number of counts Is shown in 

Figure l8b. The integrated intensities in both figures. Figures l8a and 

l8b, are not corrected for the Lorentz-polarlzatlon factor. The one 

corrected for the Lorentz-polarlzatlon factor is shown In the plot of 

Figure l8c. The data for this correction are shown In Table 5a for the 

adsorption run and Table 5b for the desorption run. The method of 

calculation for the Lorentz-polarlzatlon factor is shown in Appendix ii. 

A drop in Intensity from p/p^ = 0.50 to p/p^ = 0.55 Is due to the 
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Figure l8a.. Variation of peak area with relative pressure of water 
vapor for sodium montmoriIlonite, before applying the 
Lorentz-polarization factor 
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pressure of water vapor for sodium montmori1lonlte, 
after applying the Lorentz=pGÎsrÎ25tîcr. factor 
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Table 5a. Total Integrated intensity corrected for the Lorentz-polarîzatîon factor*, adsorption run 

P/Po ^001 sf" * 'total 'tota1/(LP) 'total 

% In^ 10^ counts In^ counts (LPldgg^ 

0.00 9.9 0.078 325.7 5.3 15.9 0.0162 48.6 4.9 

0.04 9.9 0.078 325.7 5.1 15.3 0.0156 46.8 4.7 

0.08 9.9 0.078 325.7 5.3 15.9 0.0162 48.6 4.9 

0.17 9.9 0.078 325.7 5.5 16.5 0.0168 50 .4 5.0 

0.28 10.2 0.075 352.6 6.4 19.2 0.0181 54.3 5.3 

0.31 10.3 0.075 352.6 6.2 18.6 0.0175 52.5 5.0 

0.33 10.9 0.071 393.8 7.7 23.1 0.0195 58.5 5.3 

0.34 11.1 0.069 417.1 7.6 22.8 0.0182 54.6 4.9 

0.39 11.3 0.068 429.5 8.2 24.6 0.0190 57.0 5.0 

0.42 11.4 0.068 429.5 8.7 26.1 0.0202 60.6 5.3 

0.47 11.9 0.065 470.4 10.5 31.5 0.0223 66.9 5.6 

0.50 12.0 0.064 486.3 11.2 33.6 0.0230 69.0 5.7 

*See Appendix 11. 

^Sln 0 = X/2d = -Lii = 0.77/d. 
c 2d 

LP = the Lorentz-polarization factor. 
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Table 5a (Continued) 

p/Po ^001 

a 

s In 8*^ Lpc 
'total 'total 

/(LP) 
'total p/Po ^001 

a 

s In 8*^ Lpc 

în^ 
5 

10 counts . ,n: counts (L»)d001 

0.55 12.2 0.063 500.9 9.2 27.6 0.0183 54.9 4.5 

0.58 12.3 0.063 500.9 8.7 26.1 0.0173 51.9 4.2 

0.63 12.5 0.062 517.3 10.3 30.9 0.0199 59.7 4.7 

0.65 12.6 0.061 534.5 10.5 31.5 0.0196 58.8 4.6 

0.71 13.9 0.055 658.2 12.7 38.1 0.0192 57.6 4.1 

0.73 14.5 0.053 709.0 13.4 40.2 010188 56.4 3.8 

0.75 14.9 0.052 736.7 14.0 42.0 0.0190 57.0 3.8 

0.79 15.2 0.051 765.9 16.4 49.2 0.0214 64.2 4.2 

0.82 15.2 0.051 765.9 16.3 48.9 0.0213 63.9 4.2 

0.84 15.4 0.050 797.0 17.6 52.8 0.0220 66.0 4.2 

0.91 15.5 0.050 797.0 18.1 54.3 0.0227 68.1 4.3 

0.93 15.5 0.050 797.0 18.8 56.4 0.0235 70.5 4.5 

0.96 15.5 0.050 797.0 19.0 57.0 0.0238 71.4 4.6 

0.97 18.8 0.041 1187.0 19.7 59.1 0.0165 49.5 2.6 

1.00 19.0 0.041 1187.0 18.8 56.4 0.0158 47.4 2.4 
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Table 5b. Total Integrated intensity corrected for the Lorentz-polarizatlon factor^, desorptlon run 

o
 

C
L

 o
. 

^001 

% 

sin 8^ LpC 1 
total total 

)/LP 'total o
 

C
L

 o
. 

^001 

% 

sin 8^ LpC 

in: 10 counts inZ counts (LP)doOI 

1.00 19.0 0.041 1187.0 18.8 56.4 0.0158 47.4 2.4 
0.93 18.9 0.041 1187.0 24.3 72.9 0.0204 61.2 3.2 
0.84 18.8 0.041 1187.0 25.0 75.0 0.0210 63.0 3.3 
0.75 15.6 0.049 830.0 23.4 70.2 0.0282 84.6 5.4 
0.71 15.4 0.050 797.0 17.2 51.6 0.0215 64.5 4.1 
0.66 15.1 0.051 765.9 15.3 45.9 0.0199 59.7 3.9 
0.59 14.4 0.053 709.0 13.4 40.2 0.0188 56.4 3.9 
0.53 12.8 0.060 552.6 11.5 34.5 0.0208 62.4 4.8 
0.47 12.7 0.061 534.5 10.0 30.0 0.0187 56.1 4.4 
0.33 12.6 0.061 534.5 9.7 29.1 0.0181 54.3 4.3 
0.23 12.5 0.062 517.3 10.0 30.0 0.0193 57.9 4.6 
0.14 12.1 0.064 485.3 7.8 23.4 0.0160 48.0 3.9 
0.00 10.0 0.077 334.3 2.5 7.5 0.0074 22.2 2.2 

^Se-e Append I x 11. 

''sin 0 « X/2d . 1.54/2d = 0.77/d. 

^L|) = the Lorentz-polarizatlon factor. 
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malfunction of the X-ray machine. However, beyond p/p^ • 0.55 the In­

tensities follow the trend of Increasing with relative pressure until the 

relative pressure of 0.97 Is attained, then the Intensity dropped in the 

vicinity of relative pressure close to 1.00. The dashed lines in these 

figures are extrapolated to show the probable trend of Intensity In the 

case of proper function of the X-ray machine. The curves showing the 

relationship between Intensity and relative pressure Is not smooth; this 

will be discussed later. 

The Intensity of a diffraction peak Is given by I = where 

8 Is the combined Lorentz-polarlzatlon factor which Increases with de­

creasing diffraction angle, Is the layer structure factor, and ((i Is the 

mixing function dependent on the spaclngs of the constituent phases and 

the probability of occurrence of these spaclngs (67). Johns, Grim and 

Bradley (56) have shown, on the basis of Bradley's data (16), that the 

Intensity of diffraction from three-layer clay minerals at an angle 

corresponding to 17 R should exceed that reflected at 10 % by a factor of 

approximately four. The Intensity data they obtained are without 

correction for the Lorentz-polarlzatlon factor. The result is consistent 

with the data of the present study as shown In Figures l8a and l8b. The 

Lorentz-polarlzatlon factor B alone will cause a 17 8 peak to be nearly 

three times as Intense as a 10 R reflection (60, p. 683). After correction 

for the Lorentz-polarlzatlon factor as shown In Tables 5a and 5b for 

adsorption and desorptlon cycles, the Intensity ratio at 17 % to that at 

10 % drops to about two. This Increase in intensity is Ind'cativs cf a 

change in layer structure factor. Local maxima and minima of observed 
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intensities are probably due to the mixing function i.e. the relative 

proportions of layers at different spacings and the randomness of their 

distribution, and perhaps minor changes In preferred orientation. The 

drop In Intensity when p/p^ » 0 on desorption run and p/p^ » 1.0 on 

both runs is due to the variable hydration of the clay particles in the 

system. This result Is consistent to Figures 16 and 17 and line widths 

In Figure 13b. 

Free energy changes on adsorption 

As pointed out in Equation (3), the free energy change of adsorption 

may be expressed as: 

Fu and Bartell (42), In their study of the surface areas of porous ad­

sorbents, evaluated this equation at various values of p/p^ for the 

adsorption of vapors on porous solids. When q is the mass of vapor 

adsorbed per gram of solid, the value obtained in the free energy change, 

EAF In ergs/gm of solid, for adsorption from a relative pressure of zero 

to p/p^. When the values of ZAF were plotted against p/p^ a curve 

consisting of two portions was obtained; each portion could be represented 

by an equation of the form 

where AF is the change in free energy per unit area, a and g are constants 

Free Energy Changes 
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which are different for the two portions of the curve, p/p^ in the 

relative vapor pressure, and I Is the area on which adsorption takes 

place. They pointed out that this method can be utilized to study the 

expansion and deformation of porous materials caused by adsorption of 

various vapors (42). For a given adsorbate-adsorbent system, a and g 

remain constant so long as there Is no change In the mechanism of 

adsorption, such as capillary condensation or swelling. Where a change 

occurs, values of a and B change to another set of constant values. If 

only the external surface areas of the clay are involved In adsorption of 

the vapor, the relationship can be made to read: 

W. " "'P/Po'® • 

The change in slope of the 2AF curve observed by Fu and Bartell (42) 

was attributed to capillary condensation in the pores of the adsorbents. 

The exact point at which capillary condensation takes place cannot be 

determined, but it may be assumed to show its most pronounced effects at 

p/p^ values from greater than 0.90 to saturation. For clay minerals, 

while capillary condensation undoubtedly has some effects, swelling 

(interlayer expansion) manifests Itself more profoundly throughout the 

entire adsorption range. 

Fu and Bartell (42) found that If log (ZAF) was plotted against log 

(p/p^), two straight-line portions were obtained. From the intersection 

of the two portions of the curve and from the hypothetical process they 

proposed, they were able to derive an expression for the specific surface 

of rigid porous adsorbents which did not involve assigning a molecular 
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area to the adsorbate. They tested their method with a variety of 

adsorbents and adsorbates, and the specific surfaces obtained were found 

to be in a very good agreement with those determined by the BET nitrogen 

adsorption method. 

In discussing their method, Fu and Bartell (42) states: "It is also 

conceivable that, with suitable Interpretations, this method can be 

utilized to study the expansion or deformation of porous materials 

caused by adsorption of various vapors." Sodium montmorillonite is a 

porous material which undergoes expansion with adsorption of water vapor; 

so It was felt that an analysis (33,97) similar to that of Fu and 

Bartell (42) would be instructive. Therefore, the values of the integral 

P/Po 

for Increasing Increments of p/p up to and Including the saturation 
o 

point, were determined by the graphical integration of versus p/p^ 
P ^o 

plot where was plotted on the ordinate axis and p/p^ was plotted 

on the abscissa axis. The data of the adsorption isotherm were taken 

from Roderick's investigation (97). The values from the graphical inte­

gration are multiplied by 02 ^ to obtain 

the free energy changes, ZAF ergs/gm of sodium montmorillonite, due to 

adsorption to a relative pressure of p/p^. The values of EAF obtained 

from Roderick's and Demirel's investigation are presented in Table 6. 

These values were obtained by the method of graphical integration as out-

Iined above. 

Plots of log (ZAF) versus log (p/p^) are presented in Figure 19 for 
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Table 6. Free energy changes per gram of sodium montmorillonite due to 
adsorption of water vapor (after Roderick, 97) 

Free energy change (-ZAF). ergs/gm 

p/p Sample No. 1® Sample No. 2 
° Roderick's study Demlrel's study 

0.01 1.20 X 10' 0.46 

0.02 2.01 0.83 

0.03 2.55 1.11 

0.04 3.02 1.35 

0.05 3.38 1.56 

0.06 3.69 1.76 

0.07 3.97 1.94 

0.08 4.23 2.11 

0.09 4.46 2.27 

0.10 4.68 2.42 

0.12 5.09 2.72 

0.14 5.47 3.01 

0.16 5.82 3.29 

0.18 6.16 3.56 

0.20 6.49 3.83 

0.22 6.82 4.12 

0.24 7.11 4.41 

0.26 7.50 4.72 

^Thls sample is the same as used in the present study. 
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Table 6. (Continued) 

84 

Free energy change (-EAF), ergs/gm 

P/Po a 
Sample No. 1 Sample No. 2 
Roderick's study Demirel's study 

0.28 7.85x10? 5.04x10? 

0.30 8.21 5.38 

0.34 9.01 6.13 

0.38 9.90 6.94 

0.42 10.78 7.81 

0.46 11.75 8.71 

0.50 12.70 9.61 

0.54 13.66 10.55 

0.58 14.62 11.54 

0.62 15.78 12.57 

0.66 16.93 13.69 

0.70 18.19 14.89 

0.75 19.88 16.49 

0.80 21.63 18.18 

0.85 23.52 19.95 

0.90 25.46 21.83 

0.95 27.54 23.92 

0.98 29.03 25.27 

1.00 30.33 26.44 
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Figure 19. Log-log plot of free energy change versus 
the relative pressure of water vapor for 
sodium morit^icr! Î îcr!t£, first adsorption 
run (after Roderick, 97) 



www.manaraa.com

86 

Roderick's data and In Figure 20 for Demlrel's data. Omitting the low 

p/p^ portion which contains Inaccuracy, each of the plots displays three 
g 

straight-line portions (Implying equations of the type lAF » a(p/p^) 

for various portions) rather than two obtained by Fu and Bartell (42). 

The significant characteristics of the plots have been described In 

detail by Roderick (97). By combining the free energy change data of 

Roderick (97) and of Demlrel (33) with the X-ray data of the adsorption 

run In this study, the free energy change Involved In the expansion of 

the basal spacing can be determined. 

According to the previous discussion, composite peaks can be 

resolved Into two normal peaks. It Is informative to derive an expression 

showing the total free energy change per gram of sodium montmori1lonite 

for the whole peak Is equal to that for the most probable peak under the 

composite peak. 

In the present system sodium montmori1lonite clay consists of 

platelets of different basal spaclngs. The equilibrium equation showing 

the reaction of clay with distribution of structures (or spaclngs) with 

water can be drawn as 

Clay with total 
distributions of (Pu « = 0) + -3 H.O (at Pm n ) -» 
structures "2° M ^ V 

Clay with distribution / _ \ 
of structures HgO 

Assuss that (g) and H-O everywhere In the clay are In 

equilibrium, so 
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Figure 20. Log-log plot of free energy change versus the relative 
pressure of water vapor for sodium montmori1lonite, 
adsorption run (after Demirel, 33) 
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At low pressure or low Q, ^ = kn^ Q (Henry's 

llm n„^(, In 

"HJO " " 

lim n^^D In 

"hjO * ° 

So 11" In 

"HJO * " 

llm X Inx 

X -»• 0 

Then F:°'" (P„^(,) - F^""" (P„^o = 0) - f"'°(P„^o) 

S" , g 
• - I "H O " "H O 

But 

"HJO " "HJO + KT In Px^o 

dP Q 

Therefore dpq g = RT ^— 

Then 
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p.. . dP, 
H,0 H,0 

RTj "h^O 

P "2* \o = o 

-2_ (e) 

2" Pu 

Because 

"'h.O' - f'"'"' (PH,0 - 0' ^ 

"2° p 

^HgO-O 
H»0 

but A = "w gM 3nd let P^ g = P 
2 2 

f / 

p/pQ d(p/p^) 

P/Po 

P/Pq 

^ / qd(1n p/p^) 

Therefore p , ^ 

V 
EAF - -RT / n, 
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p/p. 

" " / I q.d(ln p/p^) where i Is a 

o ' 

spacing index. 
p/Pq 

EAF = - ^ / qjd(ln p/p^) ) (9) 
1 o 

This must hold for each spacing independently, therefore 

_T P/Po 
Ej(AF)J ° " Tf / q;d(ln P/PQ) 

. 0  

Assuming that q|/E| - constant 

P/Po q 
Then AF, = - ^ Ï —— d(ln p/p ) = constant (h) 

I M ^ _ o 
o i 

and Equation (h) holds for all spacings. Let AF. = AF^^, the free energy 

change for the most probable spacing. Then by combining Equations (g) 

and (h), 

ZAF = (Ej + Eg + ^}) AF^p 

where i • mp for the most probable spacing. Then 

EAF - EAF (i) 
mp 

qj/Ej = constant if the principal structural differences are be­

tween the planes and not within the planes. This implies that q|/E| is 

nearly the same for the resolved basal spacings at relative pressure p/p^. 

Under these conditions AF^p = AF for the total system. The importance of 



www.manaraa.com

92 

the approximation - constant diminishes with the distribution of 

spaclngs. The assumption that 

- 4,0 

Is essential to the thermodynamic treatment of the data. 

The combination of the X-ray diffraction data of the present study 

and the free energy change data Is shown In Table 7. In this Table the 

reduced values of the free energy change, EAF, from the Interpolation of 

Table 6 for Roderick's data are shown. The relationship between the free 

energy change of adsorption and the Interlayer separation of the clay 

platelets Is shown In Figure 21. The average unresolved platelet separa­

tion, h, at the same p/p^ for each ZAP are obtained from Table 2 and 

Figure 13a. Figure 21 exhibits sharp breaks In the EAF versus h plot 

which corresponds closely with the slope change noted In Figure 19. The 

breaks occur at Interlayer spaclngs of 12.7, 15.5 and 19.0 R, corresponding 

to layer separation distances, h, of 2.8, 5.6 and 9.1 % If a collapsed 

basal spacing of sodium montmorl1lonlte of 9.9 % Is assumed. The first 

two h values are very nearly Integral multiples of 2.8 8, the diameter of 

a water molecule, giving additional evidence that the interlayer water 

builds up in a laminar fashion. The last two figures are consistent with 

the data from Figure 15, I.e. 12.3, 15.5 and 19.0 R. Complicating this 

Interpretation, Demlrel (33) and Roderick (97) obtained the first basal 

spacing, before introducing the vapor pressure, of 9.8 %. The first basal 

spacing of sodium montmorillonlte thus zsy depend on the duration of 

evacuation and water entrapped in the clay. 
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Table 7. X-ray diffraction data and free energy changes for the 
absorption run 

P/P, Unresolved 

^001 
spacing 

% 

ZAP* 
ergs/gm 

h' 

% 

Z AF" 
e EjAF^ 

ergs/gm ergs/gm 

0.00 9.9 -1.2x10? 0 -1.2x10? 0 

0.04 9.9 -3.02 0 -3.02 0 

0.08 9.9 -4.23 0 -4.23 0 

0.17 9.9 -5.99 0 -5.99 0 

0.28 10.2 -7.68 0.3 -7.60 -0.08x10 

0.31 10.3 -8.21 0.4 -8.00 -0.21 

0.33 10.9 -8.81 1.0 -8.30 -0.51 

0.34 11.1 -9.01 1.2 -8.50 -0.51 

0.39 11.3 -10.12 1.4 -9.00 -1.12 

0.42 11.4 -10.78 1.5 -9.30 -1.48 

0.47 11.9 -11.99 2.0 -9.80 -2.19 

0.50 12.0 -12.70 2.1 -10.10 -2.60 

0.55 12.2 -13.90 2.3 -10.50 -3.40 

0.58 12.3 -14.62 2.4 -10.80 -3.82 

0.63 12.5 -16.07 2.6 -11.10 -4.97 

®ZAF = total free energy change interpolated from Table 6. 

^h » Interlayer separation. 

^ZgAF • free energy change for external surface area interpolated 
from Figure ig. _ 

^ZjAF « ZAF - ZgAF = free energy change for internal surface. 
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Table ?• (Continued) 

P/Po Unresolved ZAP* h** Z Z.AF^ 
d ' ® . 
001 ergs/gm g ergs/gm ergs/gm 

spacing 

% 

0.65 12.6 -16.35x10? 2.7 -11.20x10? -5.15x10 

0.71 13.9 -18.53 4.0 -11.90 -6.63 

0.73 14.5 -19.21 4.6 -12.00 -7.21 

0.75 14.9 -19.88 5.0 -12.30 -7.58 

0.79 15.2 -21.28 5.3 -12.50 -8.78 

0.82 15.2 -22.39 5.3 -12.70 -9.69 

0.84 15.4 -23.15 5.5 -12.90 -10.25 

0.91 15.5 -25.88 5.6 -13.20 -12.68 

0.93 15.5 -26.72 5.6 -13.40 -13.32 

0.96 15.5 -28.04 5.6 -13.60 -14.44 

0.97 18.8 -28.54 8.9 -13.70 -14.48 

1.00 19.0 -30.33 9.1 -14.00 -16.33 
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Figure 21. Plot of total free energy change versus interlayer separa­
tion for the adsorption run 
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Figure 21 shows that the free energy change due to adsorption on the 

y 
external surface before Interlayer expansion begins is about -6x10 ergs/ 

gm for sodium montmorlllonlte. The free energy change for adsorption 

during the first state of hydration Is about -(17.9-6)xlO^ = -11.9x10^ 

ergs/gm, the free energy change during the second state of hydration Is 

about -8.0x10^ ergs/gm, and during the third state of hydration Is about 

-4.4x10^ ergs/gm. These free energy changes Include that due to addi­

tional adsorption on the external as well as the Internal surfaces of 

sodium montmorlllonlte. The free energy changes for various states of 

hydration are In the same order as those obtained by Roderick (97)• 

Expansion energies 

If the free energy changes could be divided Into two components, one 

for adsorption on external surfaces and another for adsorption on In­

ternal surfaces. It would be possible to evaluate the expansion energies, 

I.e. the free energy change due.to adsorption on and separation of the 

internal surfaces. 

The free energy change brought about by the adsorption, on a solid 

surface, of a film at equilibrium with a vapor at some pressure p may be 

expressed as 

2 
AF - - YgQ ergs/cm (9) 

where is the surface free energy of the solid surface in vacuum and 

Is that of the sol Id-vapor Interface In equilibrium at pressure p 

(l,p. 264). When the solid-vapor Interface is in equilibrium with the 

saturated vapor the free energy change is 
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AF = Ygy* - Yg(j ergs/cm^ (10) 

where I s  the surface free energy of the solid-vapor Interface at the 

saturation pressure p^. According to Jura and Harkins (58) and to Boyd 

and Livingston (15), where a solid is wetted by liquid, y^^o Is equal to 

(YJJ + Y)y), Ygj Is the solid-liquid interfacial free energy and Y^y Is 

the surface free energy of the liquid in equilibrium with Its own vapor. 

We have, therefore, at saturation: 

AF » Yg, - Ygo + ergs/cmf . (11) 

If capillary condensation occurs the y^^ term drops out of Equation (11). 

For the system of the present study the adsorption occurs only on the 

external surfaces of the clay at low relative pressures, in the relative 

pressure range of 0.05 to 0.18, the linear plot of log (lAF) versus log 

(p/Pg) Implies that the curve may be expressed by an equation of the type 

EAF = a(p/p^) . Since only external areas are Involved, the free 

energy change is given by Equation (9) as 

ZgAF « Zg(YgY - Ygo) ergs/gm (9a) 

If only the external areas were available for adsorption over for the 

entire relative pressure range It is proposed that the relationship 

Û 
ZgAF = a(p/pg) would continue to be obeyed. Under these circumstances 

the linear portion of the log (EAF) versus log (p/p^) plot between rela­

tive pressure of 0.05 to 0.20 would be extended tc s p/p^ of 1.0 as shown 

by the dashed lines on Figure 19. The free energy change at saturation 

given by Equation (11) Is: 
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ZgAF - Zg(Yg| - YgQ + Yg]) ergs/gm . (11a) 

If capillary condensation were to occur (still only external surface 

available), a behavior such as that observed by Fu and Bartell (42) would 

be expected. For a given adsorbate-adsorbent system, a and S remain 

constant so long as there is no change in the mechanism of adsorption. 

If changes in the mechanism of adsorption, such as capillary condensation 

or swelling occurs, values of a and 3 change to another set of constant 

values (42). According to Equation (11a) when there is capillary con­

densation the free energy change at saturation would be reduced by 

With the present system this probably occurs very near the satura­

tion pressure and cannot be located by log (Z6F) versus log (p/p^) plot. 

On the basis of the above discussion, the free energy changes due to 

adsorption on external and on internal surfaces were divided, at least in 

the near-saturation region, by extending the linear portion of the plot 

In Figure 19 from p/p^ = 0.05 to the saturation presence (data from 

p/p^ = 0.01 to p/PQ = 0.05 are omitted due to inaccuracy of measuring the 

q-values). This linear portion of the plot in Figure 19 corresponds to 

the free energy change due to adsorption on the external surfaces. This 

is consistent to the X-ray data that no significant change in basal 

spacing occurs in this region from p/p^ = 0 to p/p^ = 0.20, and there is 

a slope change in Figure 19 at p/p^ = 0.20 indicating the change in 

mechanism of adsorption. The change in slope at p/p^ = 0.20 is due to 

the interlayer adsorption. The difference between ZAF and Z^AF gives the 

free energy change ZjAF = E.<|», where Zj is the internal surface area per 

2 gram and <Ji will be designated as the expansion energy per cm of internal 
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surface and Is given by: 

6 =» Y - Y + AV (12) 
* 'sv 'so 

2 where AV Is the free energy change per cm of Internal surface due to 

separation of layers against the force of Interaction (92). The expansion 

energy * can also be obtained by the expression 

EAF - Z^AF^ 
, (13) 

E, 

Figure 22 presents a plot of Z.* obtained from Figure 21 for the 

adsorption versus platelet separation. Figure 22 is quite similar to 

Figure 21. The value of r.((> Is about -6x10^ ergs/gm for the first ex­

pansion increment and decreases to about -12.7x10^ ergs/gm and -16.3x10^ 

ergs/gm for the second and the third expansion Increments, respectively. 

Figure 22 shows that the free energy change due to the second state of 

hydration Is as great as or slightly greater than that for thé first 

state of hydration. The free energy change for the third state of hydra­

tion Is substantially less than that for the other two. The reasons for 

the difference of the expansion energy can be given as follows. The ex­

pansion energy for the first state of hydration Is the free energy 

change due to the disappearance of a solid surface and the formation of a 

solid-film Interface plus that due to expansion against the interaction 

energy AV^ when the clay platelets are in contact. The latter term will 

decrease the magnitude of the free energy change. In the second state of 

hydration, water must penetrate between the first water layer and the clay 

surface. No new surfaces are formed nor do any disappear. The free 
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Figure 22, Plot of free energy change due to adsorption on 
Internal surfaces versus Interlayer separation 
for the adsorption run 
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energy change is due to extension of the film thickness and to the ex­

pansion against the interaction energy AV^ when the clay platelets are 

separated by a layer of water after the first state of hydration. Again, 

the latter term decreases the magnitude of the free energy change. The 

free energy change due to the extension of the film thickness Is probably 

less than that for disappearance of solid surfaces and formation of solid-

film Interface for the first state of hydration. However, since the 

platelet separation is greater, AVg is probably less than AV^ and so the 

free energy change for the second state of hydration may be nearly the 

same as that for the first state. For the third state of hydration water 

may penetrate between the clay surface and existing interlayer water, but 

most probably enters between the layers of water for the first and second 

states of hydration. Again, no new surfaces appear and disappear. The 

free energy change is due to extension of the film thickness and to ex­

pansion against the Interacting energy when the clay platelets are 

separated by à layer of water after the second state of hydration. AV^ 

Is probably less than AV2 and AV^ because of increased separation. Since 

the free energy change on the hydration of the third state is considerably 

less than that for the second state, the change due to penetration be­

tween the first and second layers of water must be less than that for 

penetration between the clay surface and a water layer. 

Swe111ng pressures 

it was suggested by Roderick and Demirel (98) that there was a re­

lationship between free energy data and swelling pressure exerted by 

montmorlllonites. An estimate of the pressure required to prevent 
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separation of clay platelets due to the adsorption of water between the 

layers (or the swelling pressure exerted by the clay particles on uptake 

of Interlayer water) was attempted using the X-ray diffraction and the 

free energy change data. The data from other Investigators (33,80) will 

also be presented with those in the present study. 

In order to attack the problem the thermodynamic relations between 

pressure and volume will be Involved. Senich (101) derived an expression 

to calculate the swelling pressure from thé free energy change data. 

Assuming that constant temperature is attained and assuming all work to 

be pressure-volume work, the free energy change can be related to pressure 

and volume as 

dF = Vdp (14) 

where V Is the molar volume and p is the external pressure. However, if 

we consider that the expansion Is due only to the adsorption of vapor 

on the Interlayer surfaces, the expansion may be made to read 

E.d(j) = Vdp 

Assuming water is incompressible, the latter equation can be put into the 

following form: 

d* = dp = h dp (15) 
Lj o 

where * Is the expansion energy (change In free energy due to adsorption 

on, and separation of Internal surfaces) per cm^; V Is the total volume 

of interlayer water at saturation pressure per gram of sodium mont-

morlllonlte; h^ Is the maximum platelet separation; and p is the applied 

pressure. From Equation (15) we obtain: 
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(16) 

or Zj(|. - Z,4g - £,h^p 

Zj(|) - E|*g 
(17) or P -

where Is the expansion energy when the clay Is in equilibrium with 

saturated water vapor, p Is the pressure required to prevent any platelet 

separation, and p = 0 Is the pressure when maximum separation is reached. 

The numerical values of swelling pressure can be calculated by 

assigning the appropriate Internal area, Ej, per gram of sodium mont-

morillonlte In the above expression. The external areas, are deter­

mined from the adsorption Isotherm data by Roderick (97). Table 8 presents 

the external areas, obtained from the adsorption run by using Equation 

(I) for various cross-sectional areas of the water molecules. The total 

surface area £ is obtained from crystallographic data. The procedure to 

determine the total surface area from crystallographic data is shown In 

Appendix I. The area occupied per molecule for a closest packing arrange­

ment Is commonly used in surface area determinations; the corresponding 

area per water molecule would be 10.8 The data of the present study 

show that the Interlayer water arranges in a laminar manner; the arrange­

ment proposed by Hendricks and Jefferson (49) gives an area of about ii.5 

per water molecule. On the other hand, Demlrel (33) obtained a 
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Table 8. External surface areas per gram of sodium montmori1lonite 
calculated from water vapor adsorption data^ 

2 Cross-sectional area per water External surface area /gm 

* q . 0.023 
m 

10.8^ 83.0 

11.5^ 88.3 

17.5^ 134.4 

7.7® 59.2 

^Data obtained from Roderick (97, p. 87). 

'^Based on closest packing. 

^Based on arrangements of Hendricks and Jefferson (49) and 
Barshad (9). 

Based on ice structure (33). 

®Based on arrangement of Barshad (9). 
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cross-sectional area of about 17.5 per water molecule from the combina­

tion of his X-ray and adsorption data which pointed out the Ice structure 

of the adsorbed water. For the sake of comparison, all the areas of the 

water molecule mentioned are used to determine the internal surface areas, 

Ej, which are then used to determine the swelling pressure for various 

states of hydration. 

The swelling pressures of sodium montmorillonlte on the adsorption of 

water vapor for various degrees of adsorption are shown In Table 9. In 

2 
this table the value of Internal surface area, Z|, of 665 m /gm Is 

assigned for reason of the laminar arrangement of the water molecules. 

Figure 23 presents a curve showing the relationship between swelling 

pressure and platelet separation. The breaks along the curve indicate 

the completeness of one state of hydration and the beginning of the 

succeeding state. The value of used In the calculation of the 

swelling pressure is -16.33 ergs/gm (last figure of column 6 Table 7). 

From Figure 23 It Is clear that the swelling pressure of sodium mont­

moril lonite-water vapor system for the con^leteness of the first state of 

hydration and the second state are 179 and 63 tons/ft , respectively. 

When the third state of hydration has been completed the swelling pressure 

reduces to zero. The highest swelling pressure for the beginning of the 

hydration of the first state is 282 tons/ft . These values of swelling 

pressure are based on the laminar arrangement of Interlayer water whose 

molecular area Is 10.8 Table 10 shows the expansion energy and 

swelling pressure due to adsorption of water vapor for sodium mont­

moril lonlte when different values of the molecular area of water are 
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Table 9-  Swelling pressures of sodium montmorl1lonite due to adsorption of water vapor at various 
relative pressures 

p/p dL_, h E.* Z.* - Z.* Swelling pressure Swelling 
® Z.* - Eji , pressure 

spac ng % ergs/gm ergs/gm p = [ ] tons/ft^ 
8 h E, tons/Tt 

O I 
2 dynes/cm 

0.00 9.9 0 0 16.33x10? 270x10* 282 

0.04 9.9 0 0 16.33 270 282 

0.08 9.9 0 0 16.33 270 282 

0.17 9.9 0 0 16.33 270 262 

0.28 10.2 0.3 -0.08x10? 16.25 269 281 

0.31 10.3 0.4 -0.21 16.12 266 278 

0.33 10.9 1.0 -0.51 15.82 261 273 

0.34 11.1 1.2 -0.51 15.82 261 273 

d 2 2 Z. = Internal surface area of sodium montmorl1lonite in m /gm = 665 m /gm, 

Z|*g = Expansion energy when the clay is in equilibrium with saturated water vapor 

= -16.33 ergs/gm (last figure of column 4), 

h^^ = maximum platelet separation when the clay is in equilibrium with saturated water vapor 
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P'f'o 

spacing R ergs/gm 

8 

0.39 11.3 1.4 -1.12x10 

0.42 11.4 1.5 -1.48 

0.47 11.9 2.0 -2.19 

0.50 12.0 2.1 -2.60 

0.S5 12.2 2.3 -3.40 

0.158 12.3 2.4 -3.82 

0.63 12.5 2.6 -4.97 

0.65 12.6 2.7 -5.15 

0.71 13.9 4.0 -6.63 

0.73 14.5 4.6 -7.21 

0.75 14.9 5.0 -7.58 

0.79 15.2 5.3 -8.78 

0.82 15.2 5.3 -9.69 

0.84 15.4 5.5 -10.25 

Z.* - E.* Swelling pressure Swelling 
Z,* " Z,*, pressure 

ergs/gm p = [-— tons/ft^ 

Vl 

2 dynes/cm 

15.21x10? 251x10* 262 

14.85 245 256 

14.14 234 244 

13.73 227 237 

12.93 214 223 

12.51 207 216 

11.36 188 196 

11.18 185 193 

9.70 160 167 

9.12 151 158 

8.75 145 151 

7.55 125 130 

6.64 110 115 

6.08 100 104 
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p/l> d_Q. h Z.<j> Z.* - Z.* Swelling pressure Swelling 
pressure 

spacing % ergs/gm ergs/gm ^ ^ tons/ft^ 

% hqZ; 

2 
dynes/cm 

0.91 15.5 5.6 -12.68x10? 3.65x10? 60x10* 63 

0.93 15.5 5.6 -13.32 3.01 50 52 

0.96 15.5 5.6 -14.44 1.89 31 32 

0.97 18.8 8.9 -14.48 1.85 31 32 

1.00 19.0 9.1 -16.33 0 0 0 
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Figure 23. Relationship between swelling pressure and interlayer 
separation of sodium montmori1lonite on adsorption 
of water vapor 
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Table 10. Expansion energies and swelling pressures due to adsorption 
of water vapor on the Interlayer surfaces of sodium mont-
morlllonlte for various hydration states 

Hydration 
State 

Area 
ass Igned 

to a 
Water 

molecule, 

s' 

Internal 
surface 

area 

Z;,m /gm 

Swel1Ing 
pressure, p. 

Expansion 
energy, <p, 

2 2 2 
ergs/cm dynes/cm p, tons/ft 

Swel1Ing 
pressure, 

1 10.8 665 —  —  270x10: 282 
11.5 660 -- 272x10% 284 
17.5 614 -- 292x10* 305 

II 10.8 665 -9.0 171xlo! 179 
11.5 660 -9.0 172x10: 180 
17.5 614 -9.7 185x10* 193 

III 10.8 665 -19.1 60x10% 63 
11.5 660 -19.1 60x10, 63 
17.5 614 -20.4 65x10* 68 

IV 10.8 665 -24.5 
11.5 660 -24.7 — — — —  

17.5 614 -26.5 -- --
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assigned In Equation (I). The values of the swelling pressure for the 

first, second and third states of hydration are shown. The swelling 

pressure can be obtained from direct calculation by Equation (17) or 

from Figure 23 (for laminar configuration of Interlayer water). 

The expansion energy at saturation may be due In part to capillary 

condensation In external pores. This would tend to make the values given 

when the third state of hydration has completed are somewhat larger than 

the actual case; the energy change due to adsorption on Internal sur­

faces during the hydration of the third state would probably be somewhat 

less than that Indicated In Table 10. The expansion energies given In 

Table 10 for the hydration of the first two states seem not to be affected 

by capillary condensation. 

Van Olphen (110) estimated the pressure required to remove a mono­

layer of water from clay surfaces by dividing the free energy change per 

2 cm on desorptlon by the thickness of one molecular layer of water. Using 

the desorptlon data of Mooney £]_• (79,80), van Olphen (109) found that 

the net energy required to remove the last few layers of water from clay 

2 
platelets to be between 50 and 100 ergs/cm for montmorillonlte. The 

2 
estimated equivalent pressure required will be about 2000 tons/ft for 

2 
an energy change of 50 ergs/cm (see Appendix III). This represents a 

consolidation pressure rather than a swelling pressure, that Is a 

swelling pressure plus hysteresis. Van Olphen also calculated the 

pressure required to remove all the water layers from calcium mont-

9 
morlllonlte Is about 5300 tons/ft . This is equivalent to thé free 

2 energy change of 140 ergs/cm . Applying this procedure to the 
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adsorption data of the present study, the pressure required to prevent 

-8 2 
the uptake of water would be AF/2.8xlO , where 6F » 40.55 ergs/cm for 

the adsorption run (97)• This value of free, energy change yields a 

pressure of about 1534 tons/ft to prevent swelling due to the first 

Interlayer water (the first hydration state). The difference between the 

two pressures may be attributed to hysteresis. The calculation of the 

consolidation pressure by van Olphen's method, which does not divide the 

free energy change Into that due to external adsorption and internal 

adsorption, is shown In Appendix III. 

In order to consider the swelling pressure solely due to adsorption 

on the Internal surfaces, the amount of water adsorbed between the unit 

cells of sodium montmori1lonite Is calculated from the X-ray data. The 

area of the unit cell Is taken as 5.16 x 8.94 = 46.13 8^, where a^ = 

5.16 % and b # 8.94 8, a and b are the dimensions of the sodium mont-
o o o 

morillonite unit cell. From the X-ray data at various values of relative 

pressure the amount of water adsorbed between the unit cell can be calcu­

lated as shown In Table 11. The q-values from the adsorption Isotherm 

data of Roderick (97) are also Included in the Table for comparison. 
q. 

The relationship between — versus p/p^ Is shown in Figure 24, where 

qj is the amount of water adsorbed between the unit cells of the sodium 

montmori1lonite and ' i Is the change In internal adsorption per 

change In relative pressure. The drop of at p/p^ » 0.94 Is due 

to the insignificant change of the basal spacing as the relative pressure 

Increases. This happens In the transition zone of the end between the 

second state of hydration and the beginning of the third state. 
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Table 11. Calculated values of internal adsorption between the 
platelets of the sodium montmorl1 lonite 

P/Po* q* 

gm/gm, 

10"3 

basal 
spacing 

^001* % 

plate 
separation 

h, & 

V water 

cmf, 10"23 gm/gm 
"i 

P/Po 

0.006 5.10 9.89 0.00 0.00 0.00 0.00 

0.017 7.81 9.89 0.00 0.00 0.00 0.00 

0.022 9.08 9.89 0.00 0.00 0.00 0.00 

0.059 12.44 9.90 0.01 0.046 0.377 0.006 

0.112 16.33 9.91 0.02 0.092 0.754 0.007 

0.150 19.26 9.92 0.03 0.138 1.132 0.008 

0.179 22.09 9.93 0.04 0.185 1.517 0.008 

0.215 25.72 9.95 0.06 0.278 2.27 0.010 

0.259 32.21 10.09 0.20 0.923 7.56 0.029 

0.298 30.48 10.44 0.55 2.537 20.76 0.070 

0.354 56.08 11.11 1.22 5.630 46.11 0.130 

0.425 72.48 11.62 1.73 7.980 65.31 0.154 

0.494 87.78 11.97 2.08 9.590 78.52 0.159 

0.596 115.80 12.38 2.49 11.490 94111 0.158 

0.665 146.20 12.88 2.99 13.790 112.90 0.170 

0.737 183.60 14.67 4.78 22.05 180.51 0.245 

0.868 242.30 15.45 5.56 25.65 210.05 0.242 

0.939 292.20 15.50 5.61 25.88 211.94 0.226 

1.000 512.20 19.04 9.15 42.21 . 345.68 0.346 

®Data from Roderick (97). 

q| • Internal amount of water between platelet calculated from 
plate separation and dimensions of the plate and assuming 
that the specific gravity of water at 21.1*C is 0.998 gm/cc. 
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Figure 24. Plot for graphical integration of Equation (4) 
for the internal adsorptlcn on sodium mont-
morlllonite as calculated in Table 11 
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The free energy change for the internal adsorption is determined 

by the same method as In Roderick's study and this is shown In Appendix 

ill. The first, second, and third states of hydration are complete at 

the relative pressures of 0.58, 0.93 and 1.00, respectively. These 

states of hydration may correspond to the formation of the first, second 

and third layers of interlayer water. The swelling pressures calculated 

from the plot of Figure 24 are 930, 611 and 368 tons/ft for the 

beginning of the first, second and third states of hydration, respec­

tively. Table 12 presents the swelling pressure calculated by van 

Olphen's method for various conditions using the data of Roderick (97) 

and Demirel (33) comparing the swelling pressure calculated by the 

graphical method in this study. The difference between the swelling 

pressures obtained from Roderick's data and Demirel's data In columns 

3 and 4 of Table 12 Is due to the difference of the q-values at the 

same relative pressure for the independent Investigations of both 

studies. Even though at critically controlled temperature and at the 

same relative pressure, the amount of water adsorbed on and between the 

platelets was not the same. The variation of the q-values is due to 

the different manner of adsorption of water vapor on the platelets. The 

platelets of sodium montmorl1lonite is extremely thin, the diameter-to-

thickness ratio of the platelets varies from 150 to 500 (75). So the 

platelets behave like a thin flexible film and water has difficulties 

In penetrating between the platelets. Also pertinent to this discussion 

Is the variation of total surface areas of the clays that will be dis­

cussed In detail in the next section. The variation of the swelling 
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Table 12. Comparison of swelling pressure of montmori11onites obtained 
from adsorption data by various methods and investigators 

2 
Swelling pressure, tons/ft 

HydratIon 
state Van Olphen's Method Graphical Method 

Roderick's Roderick's Demlrel's Roderick Present Senich's 

data' data"" data'' oemîrel's 

data** 

I 930 1534 1314 313 282 394 

II 611 763 713 190 179 280 

I I I  3 6 8  4 7 6  4 4 4  4 7  6 3  1 8 4  

^Considering the internal adsorption only, see Figure 24 and 
Table 11. 

^Considering both internal and external adsorptions. 

^Data from Roderick and Oemirel (98). 

^Results for calcium montmori11onite (101). 
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pressures In columns 5 and 6 of Table 12 Is because of the difference In 

the X-ray data of Roderick and Demirel (98) and of the present study. 

The results In Table 12 show that swelling pressures calculated by van 

Olphen's method are many times higher than that calculated by the graphi­

cal method. The difference Is probably due to the constant stepwise 

decrease of the swelling pressure as assumed In the van Olphen's method. 

In the graphical method the swelling pressure decreases In a nonuniform 

manner and not In a stepwise pattern (see Figure 23). The swelling 

pressures of calcium montmorlllonlte calculated by Senich (101) are also 

presented In the Table for comparison. 

Comment on the surface area calculated 1^ other investigators 

From the crystallographlc data the total surface area is found to 

be 748 m /gm as shown in Appendix I. The data of the surface area from 

water vapor adsorption obtained by other investigators are shown in 

Table 13. Those Investigators in column 1 of Table 13 reported different 

values of surface area obtained from water-vapor adsorption on sodium 

montmorlllonlte. The values reported In column 3 are considerably 

different from that calculated from the crystallographlc data. 

According to Mooney e^al_. (79), It is found that the area obtained 

for water adsorption is kkO m /gm. This corresponded to the value of 

0.112 gm/gm for their data. The X-ray data of others (17.50) and of 

their own Indicate that not more than one layer of water molecules is 

present between the platelets at this water content. The X-ray data of 

the present study and the adsorption isotherm data of Roderick (97) 

showed that only one layer water existing between the platelets of sodium 
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Table 13. Surface areas of sodium montmorlllonite calculated from water-
adsorption by various investigators^ 

Areas reported Re-calculated total 
Investigators Materials from water- surface area^, 

vapor adsorp- _ 
tion, m'/gm m /gm 

Goates and Hatch Sodium Vol- 203 373 
(44) clay, Wyoming 

Johansen and Sodium mont- 303 573 
Dunning (55) morillonite 

Orchiston (91) Sodium mont- 336 639 
morillonite 

*The total surface area of sodium montmorlllonite calculated from 
the crystal lographic data Is 748 m /gm (see Appendix I). 

^External surface area of 33 mf/gm is assigned to all investigations. 
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montmorlllonlte when the Is 0.110 gm/gm (interpolation from Roderick's 

data). This Immediately suggests, therefore, that In the case of the ex­

panding- lattice clay, montmorlllonlte, the SET theory gives not the mono­

layer capacity on each surface of the expanded platelets but the adsorp­

tion of only one layer of molecules occurs between pairs of platelets, 

plus the small contribution from a monolayer on edges and external sur­

faces. In the determination of external surface area It Is necessary to 

perform the adsorption Isotherm experiment on the sample using nitrogen 

as an adsorbate. The external surface area can then be calculated by 

using Equation (l), since nitrogen does not penetrate the Interlayer 

region. Mooney (79) gave the value for nitrogen adsorption as 

2 
33 m /gm In their study. Because only one molecular layer of Interlayer 

water exists between the platelets of sodium montmorlllonlte and because 

water Is adsorbed on both Internal and external areas, the area obtained 

from water adsorption represents the external area plus one-half of the 

internal area. The total surface area from their data then would be 

calculated as 2(440) - 33 = 847 m^/gm. Thus, the surface areas reported 

by others (44,55,91) In Table 13 are not total surface areas, but they 

are the external area plus one-half of the Internal area. The total 

surface areas can be obtained If the area for nitrogen adsorption Is 

assigned and the calculation Is followed as outlined above. Using the 

2 value of 33 m /gm for nitrogen adsorption, the calculated total surface 

areas are obtained as shown In column 4 of Table 13. 

The calculated total surface areas stiii vary over a consldersklc 

2 
range, and are less than the crystallographic area, 748 m /gm. According 
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to Olson and MesrI (90), the diameter-to-height ratio of montmorl1lonite 

platelet varies from 150 to 500, allowing It to behave like a highly 

flexible film. Because of the large area of the plate In comparison to 

the plate thickness, It Is difficult for the adsorbate to penetrate and 

coat all the area between the platelets. Capillary condensation can also 

affect the amount of adsorbate penetrating between the platelets such 

that the platelets may not be completely covered by the adsorbate. The 

source and method of preparation of the sample therefore probably affect 

the surface area. 

High Pressure X-ray Study 

Two samples were tested In the high pressure X-ray goniometer 

accessory, one a single crystal of a sodium-tetraphenyl boron-degraded 

\ 
phlogoplte, and the other a sodium montmorlllonite. 

The peak for the first order basal spacing of the degraded sodium 

phlogoplte under zero pressure Is shown In Figure 25. The basal spacing 

of degraded sodium phlogoplte Is about 14.8 R. As the pressure was in­

creased there Is a slight change in the peak position at 14.8 R. At the 

2 
pressure of 330 tons/ft there appeared another small peak at the basal 

spacing of 12.2 % as well as the peak at 14.8 %. The peak at 12.2 % then 

grew bigger as the pressure Increased, while the one at 14.8 % decreased. 

A typical double peak under pressure is shown In Figure 26. When the 

maximum instrument pressure of 3860 tons/ft was reached the peaks 

appeared as shown In Figure 27. There Is a small change In the peak 

^San^le supplied by Dr. A. D. Scott, Dept. of Agronomy, Iowa State 
University. 
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Figure 25. First order peak of the degraded sodium 
phlogoplte under zero pressure 
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Figure 26. Typical double peaks of the degraded sodium 
phlogopite under pressure 
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Figure 27. Peaks of the degraded sodium phlogoplte at the 
maximum pressure of 3860 tons/ft 
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position with the Increasing pressure due to elastic response. Perhaps 

most significant, however, Is the co-existence of the peaks at 14.8 % 

and 12.2 8, Indicating that two different basal spaclngs may occur 

simultaneously In a single crystal of degraded sodium phlogopite under 

pressure. 

The data from the X-ray diffraction study of sodium montmorl1lonite 

under pressure are presented In Tables l4 and 15 for loading and un­

loading paths, respectively. The values tabulated for the basal spaclngs, 

line widths and total Integrated Intensities are the averages of three 

observations for each run. After maintaining a constant pressure for 

about 24 hours, the specimen was X-rayed and It was found that the basal 

spaclngs, line widths and integrated Intensities remained more or less 

constant with time. The widths of the diffraction peaks By at half-

height were determined as sketched in Figure 11 for a single peak. For 

composite peaks the widths of the peaks By at half-height were determined 

as sketched in Figure 12. Resolution of the composite peaks was attempted 

as previously described for high vacuum X-ray data. The Integrated 

intensities of the peak were determined by use of a planimeter to measure 

areas of the resolved peaks as before. 

Column 1 of Tables 14 and 15 shows the pressure on the sodium mont­

morl llonlte sample without correction for apparatus friction. The calcu­

lation of the pressure Is Illustrated In Appendix IV. 

The resolved first-order basal spaclngs are plotted against the un­

corrected pressure are shown in Figure 28 for the loading path and Figure 

29 for the unloading path. From both figures It is found that the 
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Table 14. X-ray diffraction data for high pressure study, loading path 

Pressure on Resolved Percentage 
sample d__. area of 2 

^g^a the peaks degrees degrees In 
spaclngs after 

9 resolutions, 
percent > 

13.2 20.5 88.0 0.77 0.85 5.7 
23.9 12.0 0.44 

28.2 20.1 82.7 0.74 0.90 6.9 
23.2 17.3 0.50 

39.4 20.1 83.1 0.70 0.95 7.4 
23.1 16.9 0.54 

72.2 19.7 86.0 0.74 0.87 8.2 
22.9 14.0 0.55 

105.1 19.5 88.7 0.73 0.87 12.3 
22.7 11.3 0.64 

137.9 19.3 89.5 0.69 0.87 13.5 
22.2 10.5 0.50 

203.6 16.5 17.3 0.74 1.18 14.4 
19.2 82.7 0.86 

331.6 16.2 34.1 0.58 1.42 16.4 
19.0 65.9 0.86 

492.5 16.1 52.9 0.66 1.49 18.4 
18.6 47.1 0.77 

650.1 16.1 62.7 0.70 1.24 19.1 
18.4 37.3 0.72 

814.5 16.1 100.0 1.15 1.15 21.1 

968.6 16.1 100.0 1.06 1.06 26.4 

1153.3 16.0 100.0 1.06 1.06 21.8 

1293.7 15.9 100.0 1.16 1.16 28.5 

®1 tsf « 0.9765 kg/cmf = 9765 kg/mf = 0.958 bar. 
u 
"B^ - line widths of individual normal peaks after rcSûîutiori. 

^B_ • line width of single peak without resolution. 
J ' 

A • total Integrated Intensity. 
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Table 14. (Continued) 

Pressure on Resolved Percentage 
C A" 

sample ^001 
spacings 

% 

area of 2 
tsf* 

^001 
spacings 

% 

the peaks 
after 

resolutions, 
percent 

degrees deg rees In 

1454.6 13.2 21.2 1.10 1.24 26.8 
15.8 78.8 0.96 

1612.2 13.1 23.7 1.26 1.58 26.9 
15.7 76.7 1.01 

1930.7 13.0 32.3 1.05 1.91 31.9 
15.5 67.7 1.00 

2249.2 12.8 32.7 0.94 2.06 35.5 
15.5 67.3 1.24 

2567.7 12.9 46.2 0.98 2.20 37.8 
15.2 53.8 1.06 

2886.2 12.7 53.7 1.14 2.26 43.1 
15.1 46.3 1.04 

3204.7 12.6 56.7 1.06 2.07 41.4 
15.0 43.3 1.24 
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Table 15. X-ray diffraction data for high pressure study, unloading 
path 

Pressure on Resolved Percentage Y A" 
sample ^boi 

spaclngs 

% 

area of 2 

I/I 

^boi 
spaclngs 

% 

the peaks 
after 

resolutions, 
percent 

degrees degrees In^ 

3204.7 12.6 56.7 1.06 2.07 41.4 
15.0 43.3 1.24 

2567.7 12.9 54.5 1.00 2.08 49.6 
15.3 45.5 1.12 

1930.7 13.2 44.4 0.99 2.18 88.0 

15.5 55.6 1.04 

1293.7 13.4 29.0 1.22 1.50 105.8 
15.7 71.0 0.94 

968.6 15.8 100.0 1.15 1.15 126.3 

650.1 16.0 100.0 0.98 0.98 139.5 

331.6 16.2 72.5 0.78 1.15 184.9 
18.9 27.5 0.90 

8.5 20.8 100.0 0.93 0.93 150.6 

0 21.7 100.0 0.88 0.88 159.6 

®1 tsf = 0.9765 kg/cmf = 9765 kg/mf = 0.958 bar. 

= line widths of Individual normal peaks after resolution. 

= line width of single peak without resolution. 

= total Integrated Intensity. 
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y = 19.555 - 0.002X, E = 97 x 10^ psi 

3 y = 16.449 - 0.000463X, E = 516 x 10"' psi 

TT tr 
y = 13.618 - 0.000313x, E = 662 x 10^ psi 

N> 
00 

1200 1600 2000 

Pressure on the sample, tons/ft 

2400 
2 

2800 3200 

Figure 28. Variation of the dgg,-spacing with the pressure on the sodium 
montmori1lonite sample, loading path 
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y = 16.254 - 0.000389X, E - 591 x 10^ psi 
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2 Pressure on the sample, tons/ft 

Figure 29. Variation of the d...-spacing with the pressure on the sodium montmori1lonite sample, 
unloading path 
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relationship between the first order basal spacing and the pressure yields 

several straight lines with different slopes. The smoothness of those 

plots tends to substantiate the method of peak resolution, and Indicates 

a maximum error of + 0.2 8 In resolved dgg^-spaclng. In Figure 28 

(loading path) there are five straight-line portions with progressively 

decreasing slopes at higher pressures. The first three lines show some 

scatter and change In slope, perhaps related to the higher water content 

and less stable structure. The fourth and fifth lines, representing two 

and one molecular layers of water, respectively, show excellent linearity 

suggestive of a more rigid elastic structure. Relationships follow the 

same trend during unloading (Figure 29) as in the loading path, the two 

bottom-most lines again showing excellent linearity. Only a few points, 

insufficient to establish linear relationships, were obtained for the 

higher basal spacings representing the third and fourth layers of Inter-

layer water. However, the linear relationships between pressures and 

basal spacings for both loading and unloading paths indicate an elastic-

property of the sample from which may be obtained moduli of elasticity 

for each configuration of Interlayer water. The linear regression 

equations for the seven straight-line portions are shown in Figures 28 

and 29. If the apparatus friction Is constant It will affect the 

Intercepts but not the slopes of the lines, and thus should not Influence 

the moduli of elasticity. The procedure for calculation of the modulus 

of elasticity is shown in Appendix V. 

The modulus of elasticity probably represents a Slight rearrangement 

of water molecules under pressure. This is analogous to the modulus of 
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elasticity for any solid, and should be unvarying so long as the 

structure Is not significantly changed. However, If the modulus of 

elasticity Involves a change In structure of water molecules, it should 

change. The closeness of the values for one and two layers of water 

perhaps correlates with a similarity in swelling pressure Increment. 

If friction were not constant with pressure, perhaps by Increasing 

as clay squeezes out, during the loading path the friction would increase 

linearly whereas during unloading It would be constant. This would give 

higher moduli of elasticity for loading, and the valid values would be 

from unloading path. However, data indicate no consistent difference. 

Table 16 shows the variation of modulus of elasticity for various 

pressure rangés for both loading and unloading conditions. 

In order to find the apparatus friction, linear equations for loading 

and unloading paths were solved simultaneously to determine the pressure 

to achieve a specific basal spacing. Thus for y = 15 % (two layers of 

Interlayer water) and y « 12.6 R (one layer of interlayer water): 

Loading: 15 • 16.449 - 0.000463x; x » 3129.7 tsf 

Unloading: 15 = 16.254 - 0.000389%; x = 3223.7 tsf 

2F^= - 94.0 tsf 

Loading: 12.6 = 13.618 - 0.000313%; x = 3252.4 tsf 

Unloading: 12.6 = 13.969 - 0.0Q04l6x; x = 3290.1 tsf 

2F = - 38.5 tsf 

The friction is negative from the above calculation. Repeating at 

y - 16 8 and 13.2 8, 

j 
See Appendix VI. 
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Table 16. Moduli of elasticity of various load Increments and loading conditions 

Number of Basal spacing Pressure range Pressure range 
water layer (loading or during loading ^ during un- ® 

unloading) tsf psi loading psi 
tsf 

4 23.9 to 22.2 0 - 140 29 x 10^ 

3 20.5 to 19.3 0 - 140 34 x 10% 

19.3 to 18.4 140 - 650 97 x 10^ 

16.2 to 15.0 330 - 3200 516 x 10^ 330 - 3200 591 x 10^ 

13.4 to 12.6 1450 - 3200 662 x 10^ 1290 - 3200 463 x 10^ 
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Loading: 16 = 16.449 - 0.000463x; x = 969.8 tsf 

Unloading: .16 • 16.254 - 0.000389x; x = 653.8 tsf 

2F « 316.8 tsf 

Loading: 13.2 = 13.618 - 0.000313x; x = 1004.8 tsf 

Unloading: 13.2 = 13-969 - 0.0004l6x; x = 1848.6 tsf 

2F = -843.8 tsf 

Thus apparatus friction appears to be negligible compared to other 

factors affecting the modulus of elasticity. 

The effect of preferred orientation due to loading is considered 

next. Initially, localized contact pressures may be larger than the 

indicated pressure reading; this effect should decrease with increasing 

pressure because of better particle reorientation, after which it should 

remain constant. This also would give a lower modulus of elasticity for 

the loading path, which again Is not consistent with the data. Another 

possibility is that friction decreases with Increasing pressure, due to 

expansion of the cylinder and injection of oil along the wall (clearance = 

0.0004 in). This would give a lower modulus of elasticity for loading, 

which is consistent for 16 % spacings but not for 12 X spaclngs. 

Another possibility Is that friction decreases nonllnearly, Indicated 

by a slight shift of data points along the 16 % line at a pressure of 

about 1800 tons/ft . This suggests that friction decreases above 1800 

tons/ft , above which the loading and unloading curves are essentially 

identical on both 16 % and 12 R peaks. The latter Indicates that friction 

is negligible at high pressures. It also should be noted that friction 

must be very low to obtain a response at low applied pressures. 
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The effect of pressure on the percent of the total Integrated In­

tensity assigned to each peak is shown in Figure 30 for loading path and 

Figure 31 for unloading path. In these figures It can be seen that the 

whole curve of Figure 30 (loading path) shifts to the left in Figure 31 

(unloading path), the pressure required to achieve a given basal spacing 

being greater for the loading path than for the unloading path. The 

lateral shift required to superimpose the curves for a single peak first 

order basal spacing of about 16 % in 330 tons/ft^, and indicates the 

hysteresis between the loading and the unloading paths for this sodium 

montmori1lonite sample. Hysteresis consists of apparatus friction, 

difficulty In getting water in and out of clay, and elastic hysteresis. 

If, as previously indicated, apparatus friction is negligible, the 

hysteresis effect may be assigned mainly to the difficulty with which 

water Is forced out or reenters between the platelet layers, pre­

sumably because of trapping. 

The amount of hysteresis increases with the applied pressure and 

reduction In the number of water layers, as shown in Figure 32, which is 

obtained from superimposition of Figures 30 and 31. The ordinate axis 

of the plot of Figure 32 is labelled as pressure retention, and represents 

the amount of hysteresis in units of pressure, or the difference between 

swelling pressure and pressure to cause ejection of water, the latter 

being the larger. 

The apparatus had insufficient capacity to attain a single 13 R peak 

Indicative of a single layer of water; however, extrapolation of a line 

through the last 7 points in Figure 30 indicates it would require loading 
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figure 30. Variation of the percentage integrated intensity of the peaks after resolution 
with pressure on the sample of the sodium montmorlllonite, loading path 
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Figure 31. Variation of the percentage integrated intensity of the peaks after resolution 
with pressure on the sample of the sodium montmori1lonite, unloading path 



www.manaraa.com

900 

800 

700 

. 600 
c 
o 

5 500 w 
2! 
2 400 
3 
w 

«ï: 300 

u> 

200 

100 

0 
400 800 1200 1600 2000 2400 

Pressure on sample, tons/ft 

2800 
2 

3200 

Figure 32. Relationship between pressure 
sodium montmori1lonite in the 

on the sample 
high pressure 

and pressure retention of the 
chambe r 



www.manaraa.com

138 

2 
of the order of 5,500 tons/ft to bring the basal spacing between the 

platelets of sodium montmorillonlte down to about 13 % or one layer of 

interlayer water. 

The relationships between total integrated intensity of the 

composite peak and the applied pressure are shown In Figures 33a, 33b 

and 33c. Figure 33a presenting the total integrated intensity in 

units of area under the peak, and higures 33b and 33c showing the varia­

tion In total integrated Intensity with pressure in counting units before 

and after correction for the Lorentz-polarlzation factor, respectively. 

The correction data for the Lorentz-polarlzation factor Is tabulated In 

Tables 17a for the loading path and 17b for the unloading path. The 

calculation utilizing the Lorentz-polarlzation factor is illustrated In 

Appendix 11. 

From these three Figures It Is evident that total integrated in­

tensity increases with pressure during loading, indicating a changing 

structure factor and/or Increased preferred orientation of the particles, 

the particles tending to adjust themselves into a parallel arrangement 

normal to the direction of the applied loading. In the unloading path, 

as shown In the second branch of Figure 33, the integrated intensity in­

creased with decreasing pressure, indicating that preferred orientation 

was retained during unloading. 

The relationships between total intensity and pressure during cyclical 

loading and unloading are shown in Figures 34a and 34b. Loading past the 

second cycle caused little change in total intensity but reduced hysteresis 

In the response of basal spacings to pressure. 
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Figure 33a. Variation of the total area under the peak with the pressure on the 
sample of sodium montmori1lonite before correction for the Lorentz-
polarization factor 
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Figure 33b. Variation of the total integrated intensity of the peaks with the pressure 
on the sample of sodium montmorillonite before correction for the Lorentz-
polarization factor 
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Figure 33c. Variation of the total integrated intensity of the peaks with the 
pressure on the sample of sodium montmorl1lonite after correction 
for the Lorentz-polarlzation factor 
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Table î'/a. Total Integrated intensity corrected for the Lorentz-polarizatfon factor®, loading path 

Pressure on 
sample 

tsf 

*^001 
sin 6^ LpC 

'total 'total 
/(LP) 

'total Pressure on 
sample 

tsf % In^ 10^ counts InZ counts (LP) (d^,) 

13.2 20.5 0.037 1458 5.7 17.1 0.0039 11.7 0.57 

28.2 20.1 0.0038 1382 6.9 20.7 0.0049 14.7 0.73 

39.4 20.1 0.038 1382 7.4 22.2 0.0053 15.9 0.79 

72.2 19.7 0.039 1312 8.2 24.6 0.0062 18.6 0.94 

105.1 19.5 0.039 1312 12.3 36.9 0.0093 27.9 1.43 

137.9 19.3 0.039 1312 13.5 40.5 0.0102 30.6 1.58 

203.6 19.2 0.040 1247 14.4 43.2 0.0115 34.5 1.79 

331.6 19.0 0.040 1247 16.4 49.2 0.0131 39.3 2.06 

492.5 16.1 0.047 902.4 18.4 55.2 0.0203 60.9 3.78 

®See Appendix II. 

^Sin 0 = X/2d = 1.5V2d = 0.77/d. 

^LP = Lorentz-polarization factor. 
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Table 17a. (Continued) 

Pressure on 
sample 
tsf 

^boi sîn 8*^ LpC 
'total 'total 

/(LP) 
'total Pressure on 

sample 
tsf R ,n2 10^ counts în2 counts (LP) (doo,) 

650.1 16.1 0.047 902.4 19.1 57.3 0.0211 63.3 3.93 

814.% 16.1 0.047 902.4 21.1 63.3 0.0233 69.9 4.34 

968.6 16.1 0.047 902.4 26.4 79.2 0.0292 87.6 5.44 

1153.) 16.0 0.048 865.1 21.8 65.4 0.0251 75.3 4.70 

1293.7 15.9 0.048 865.1 28.5 85.5 0.0329 98.7 6.20 

1454.(5 15.8 0.048 865.1 26.8 80.4 0.0309 92.7 5.86 

1612.2 15.7 0.049 830.0 26.9 80.7 0.0324 97.2 6.19 

1930.7 15.5 0.049 830.0 31.9 95.7 0.0384 115.2 7.43 

2249.2 15.5 0.049 830.0 35.5 106.5 0.0427 128.1 8.26 

2567.7 15.2 . 0.050 797.0 37.8 113.4 0.0474 142.2 9.35 

2886.2 12.7 0.060 552.6 43.1 129.3 0.0779 233.7 18.40 

3204.7 12.6 0.060 552.6 41.4 124.2 0.0749 224.7 17.83 
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Table 17b. Total integrated intensity corrected for the Lorentz-polarlzatlon factor^, unloading 
path 

Pressure on 
sample 
tsf 

"001 
sin 6 LP' 

in 

total 

10 counts in counts 

I 
total 

(LPXdoo,) 

3204.7 12.6 0.061 534.5 41.5 124.2 0.0774 224.7 17.83 

2567.7 12.9 0.059 571.6 49.6 148.8 0.0867 260.1 20.16 

1930.7 15.5 0.049 830.0 88.0 264.0 0.1060 318.0 20.51 

1293.7 15.7 0.049 830.0 105.8 317.4 0.1274 382.2 24.34 

968.6 15.8 0.048 865.1 126.3 378.9 0.1459 437.7 27.70 

650.1 16.0 0.048 865.1 139.5 418.5 0.1612 483.6 30.22 

331.6 16.2 0.047 902.4 184.9 554.7 0.2046 613.8 37.88 

8.5 20.8 0.037 1458.0 150.6 451.8 0.1032 309.6 14.88 

0 21.7 0.035 1630.0 159.6 478.8 0.0979 293.7 13.53 

®:>ee Append! x 11. 

^Sin 8 = X/2d = 1.54/2d = 0.77/d. 

^LP = Lorentz-polarization factor. 
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Figure 34a. Variation of total Intensity (B, x H) with the pressure on the sodium mont-
morillonlte sample for the cyclic loading, loading path 
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Table 18 presents the swelling and consolidation pressures obtained 

from high pressure data compared with those from high-vacuum data. The 

Table also tabulates swelling pressure and consolidation pressures ob­

tained from other investigators (98,107,109). It is clear that the 

consolidation pressures obtained from the high-vacuum data and the high 

pressure data are in the same range for the first and third states of 

hydration. Discrepancies may be due to nonuniform effective stress be­

tween the platelets in the high pressure study and the difficulty of 

squeezing water out of the platelets of the sodium montmori 1 lonlte. The 

swelling pressures from high-vacuum data in the present study fall In the 

same range as those obtained by Roderick and Demirel (98). However, the 

swelling pressures from high pressure data are many times greater than 

that from high-vacuum data. This Is perhaps due to greater trapping of 

water between the platelets of sodium montmori1lonlte under a condition 

of uniaxial pressure and preferred orientation, compared to the 

relatively loose and random structure during adsorption-desorption ex­

periments. 

The high-vacuum data used in the present study are from adsorption 

runs, which give lower values of swelling pressure. If the desorptlon 

data were used and the graphical method of consolidation pressure 

determination employed, higher values of consolidation pressure would 

be obtained. However, these values would still be less than those ob­

tained by the method of van Olphen because of the assumed series stepwise 

energy level in his calculation. 



www.manaraa.com

148 

Table 18. Swelling pressures from high pressure data comparing to that 
from high-vacuum data 

Hydration 
state 

Swelling pressure. tons/ft^ Consolidation pressure 
tons/ft 

Adsorption data High 
pressure 

data'' 

Desorption 

data'' 

High 
pressure 

Present 
study 

Roderick 
and Demlrel® 

High 
pressure 

data'' 
van Olphen 

data* 

1 282 313 4750 4800 5500 

II 179 190 > 2450 1300 > 3200 

III 63 47 340 380 650 

^Based on high vacuum data, adsorption run (98). 

''obtained by subtracting pressure retention in Figure 32 from 
consolidation pressure, high pressure data. 

^Extrapolated from high vacuum data, desorption run (107,109). 

^Extrapolated from Figure 30 of the present study. 
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CONCLUSIONS 

The following conclusions have been drawn on the basis of the re­

sults obtained: 

1. The high pressure and high-vacuum accessories used in the pre­

sent study, designed and assembled by Olson (89) functioned perfectly. 

2. The change in average basal spacings of sodium montmori1lonite 

takes place in a continuous but nonuniform manner with changes in 

relative pressure. Continuity is due to simultaneous existence of 

varying numbers of layers of interlayer water. Expansion tends to 

occur in three increments. These results are consistent with those of 

past investigations. 

3. In the high pressure study of a single crystal of a sodium-

tetraphenyl boron-degraded phlogopite, the X-ray spectra show separate 

peaks indicative of the co-existence of one and two layers of interlayer 

water between the plates. 

4. In the high pressure study of a sodium montomori1lonite, the X-

ray spectra show overlapping peaks, indicating the co-existence of vary­

ing numbers of layers of interlayer water between the plates. 

5. A method for resolving composite peaks was introduced and is 

found to be workable for both high-vacuum and high pressure studies. 

6. Single peaks were found in a narrow range of relative pressures 

from 0.85 to 0.96, indicating all platelets have the same basal spacing. 

Outside this range the peaks are composite, indicating interstratifica-

tion of the system. 
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7. The combined free energy data of Roderick (97) and the X-ray 

data of the present study indicates a possible laminar configuration of 

the interlayer water. Because of the questionable nature of the fit, 

each increment of adsorption at about one layer of interlayer water is 

called a hydration state. 

8. The water-vapor adsorption surface area calculations of past 

investigators (44,55,91) assumed monolayer adsorption on internal sur­

faces, whereas X-ray data indicate only one molecular layer of inter­

layer water between successive platelets of sodium montmori1lonite, or 

one-half layer for each surface. The surface area reported by those 

investigators thus is only about one-half of the actual surface area. 

Corrected determinations agre_ closely with surface area calculations 

from crystal lographic data. 

9. The free energy change during the first state of hydration is 

approximately the same as that for the second state of hydration; the 

change during the third state is substantially less than those for the 

other two. Also pertaining to the same conclusions is the expansion 

energy for the various states. 

10. Free energy data and X-ray data permit the estimation of swell­

ing pressures exerted by sodium montmori1lonite due to the uptake of inter­

layer water when the material is in contact with saturated vapor. The 

calculated swelling pressure exerted when the platelet separation is zero 

is about 282 tons/ft . The pressure exerted when the second state of 

2 
hydration is beginning is about 179 tons/ft ; and when the third state 

2 
is beginning is about 63 tons/ft . 
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11. The swelling pressure calculated by the method of van Olphen 

using the data of Roderick (97) are many times greater than the values 

obtained from the free energy and X-ray data of the present study. 

12. The high pressure apparatus has insufficient capacity to 

squeeze out all layers of the water from the sodium montmori1lonite. 

The pressure to squeeze the last layer of water is obtained from extra-

2 
polation to be 5500 tons/ft . 

13. The linearity of the pressure-basal spacing plot indicates the 

elastic nature of the sodium montmori1lonite - water system, and also 

substantiates the method of peak resolution. The modulus of elasticity 

of sodium montmori1lonite - water system is found to be variable with 

the pressure and number of water layers between the platelets. 

14. The inequality of the consolidation and swelling pressures are 

probably due to the hysteresis of a highly oriented clay-water system 

under uniaxially applied pressure, i.e. difficulty in water squeezing 

out or re-entering between the platelets of sodium montmori1lonite. 

15. The total integrated intensity of diffraction increased with 

pressure for the loading path. For the unloading path the total in­

tegrated intensity is still increasing. This indicates the increased 

structure factor and/or preferred orientation for both paths. 

16. in the cyclical loading, loading past the second cycle caused 

little change in total X-ray intensity but reduced hysteresis in the 

response of basal spacings to pressure. 

17. Swelling pressures obtained from the high pressure study are 

2 
4750, more than 2450, and 340 tons/ft for the first, second and third 
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states of hydration. These are close to those calculated by van Olphen 

(107,109), but considerably higher than those calculated from the ad­

sorption data. 

18. The difference between the swelling pressures from high-vacuum 

and high pressure studies is presumably due to the different stress 

states influencing structure and preferred orientation and hence the 

difficulty with which water could be pulled or squeezed out, or could 

re-enter between the oriented flexible platelets of sodium montmori1lonite. 

Another factor may be the nonuniform effective stress between the 

platelets. 
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APPENDIX I 

Surface Area Determination 

Total surface area; 

c , No From Z « -g—' 
"s 

23 
where N Is Avogadro number = 6.023 x 10 

Mg Is the formula (Alg ogSlgOggfOHl^NaQ weight of 

a unit cell layer, 

a  Is the area exposed by one unit cell layer. 

Mg = 742 gm 

2 X 5.16 X 8.94 

where a = 5.16 and b = 8.94 are the unit cell dimension (33). 
o o 

2 
After substituting, E « 748 m /gm for sodium montmorl1lonite. 

External surface area; 

z . — (1) 
® M 

M = molecular weight of water = 18 gm 

023 (f 

s « 10.8 

= 0.023 (from BET plot of Roderick (97)) 

- 6.023 X lofS 

After substituting, • 83.0 m^/gm. 
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APPENDIX II 

Total Integrated Intensity Corrected for the Lorentz-polarfzatlon Factor 

At p/p^ - 0, dgQ, - 9.9 

X 1,5% 
From Bragg Equation, sin 0 • « —jg— 

sin e = - -^= 0.078 

From Table 5.25B page 270, International Tables for X-ray 

Crystallography (54), the Lorentz-polarlzatlon factor = 325*7 

2 
Total Intensity = 5.3 in 

The data was obtained at the range of 500 cps 

Area 1 in^ = (60) = 3000 counts 

Total Intensity = 5.3 (3000)= 15.9 x 10^ counts 

15 9x10^ 
Corrected total Intensity = y = 48.6 counts. 
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APPENDIX III 

Swelling Pressure or Consolidation Pressure Determination 
(van Olphen's Method) 

In order to calculate the swelling pressure by this method it is 

necessary to know the free energy accurately. The free energy change is 

obtained from the graphical integration of Equation (4). This can be 

determined from the area under the curve of the — versus p/p^ plot 

for the adsorption run as shown by Roderick (97, p. 94). The free energy 

change AF is calculated from the formula 

AF = - i 

, _ (8.314x10?)(297.5) , 

(18.02)(748x10*) 

AF = '183.5 I 

where I is the value of the area under the curve being considered. In 

order to prevent the uptake of any interlayer water between the platelets, 

the value of I is 0.2210. For the beginning of the second and third 

states of hydration the values of I are 0.1099 and 0.0685, respectively. 

The free energy change for the first state of hydration Is 

AF - -183.5 (0.2210) = -40.55 ergs/cm^ 

For the second state of hydration AF = -183.5(0.1099) 

2 » -20.17 ergs/cm . 

For the third state of hydration AF = -183.5(0.0685) 

2 
« -12.57 ergs/cm . 
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Dividing by the diameter of one water molecule, the swelling 

pressure = ^0.55 dynes/cm^ 
(2.76 X 10"*) 

tons/ft^ 
(2.76 X Id"")(9.5760 X icf) 

'"•55 " tons/ft^ 
9.5760 X 2.76 

2 
Swelling pressure = 1534 tons/ft . 

Similarly, the swelling pressure for the second and third state of 

hydration will be 763 and 476 tons/ft , respectively. Consolidation 

pressures can be similarly calculated, but using AF data from the 

desorption run. 
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APPENDIX IV 

Calculation of Pressure on the Clay Sample 

Assuming the gage pressure = 100 psi. 

Corrected pressure from calibration curve = 110 psi. 

Area of the large piston = 0.7854 In 

Load on the large piston = 110(0.7854) lbs. 

Area of the sample chamber = 0.0861 In . 

Pressure on the sample = ^ ^ P s i -

The value 9.121 i:j the area ratio of the piston and the sample 

chamber. This is a factor to convert the corrected gage pressure to 

pressure on the sample. 

Pressure on the sample = 110(9.121) • 1003.310 psi 

1 tons/ft^ " 13.889 psi. 

Pressure on the sample « ^ "  7 2 . 2 1  t s f .  
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APPENDIX V 

Calculation of Modulus of Elasticity 

The equation of the straight line in y » 16.449 - 0.000463x 

where 

y = first order basal spacing In Angstrom 

X = pressure on the sample 

when 
X » 0, y = 16.449 A 

stress 
Modulus of elasticity E -

strain 

Let the Initial thickness of the sample at zero pressure Is equal 

to y « 16.449 " y-intercept of the equation. 

The final thickness of the sample at 3204.73 tons per square foot 

is 15.030 R (from Table 14) 

... stra.n - - a 

E - J204^23_xj6Jt^ ̂  37149.121 tsf 

E - 13.889 (37149.121) - 515,964 psi 

Modulus of elasticity - 515,964 psi. 
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APPENDIX VI 

Hysteresis between Loading and Unloading Conditions 

The system of forces In the loading and unloading conditions can be 

shown below as 

F F 

P-F PtF 

F F 

Loading condition Unloading condition 

Assuming zero hysteresis, at identical basal spacing and for the 

elastic deformation 

(P-F) for loading • (P+F) for unloading 

where 

P " Pressure applied over the sample 

F • Friction 

2F = 0 = hysteresis. 

But there exist the hysteresis, so 2F is equal to the hysteresis 

between the loading and unloading cycle. This hysteresis consists of 

apparatus friction, elastic deformation of the platelets of the clay 

particles and difficulty In water squeezing and reentering between the 

platelets. 
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